
KasaDaka: a sustainable voice-service platform

Developing a Voice Service Development Kit

André Baart
VU Amsterdam

andre@andrebaart.nl
Master’s thesis supervisor: Victor de Boer

ABSTRACT
In the developing world the adoption rate of the Internet is
still relatively low, causing a digital divide. Barriers to adop-
tion include a lack of relevant content, low literacy and a lack
of resources and infrastructure. Innovative voice-services
that can be accessed through the highly adopted simple mo-
bile phones of the local population, are able to offer informa-
tion services like those found online. This research focuses
on lowering the barrier to entry of voice-service develop-
ment, by simplifying the development process and reducing
the knowledge required. This allows the sourcing of local
voice-service developers, which improves sustainability by
eliminating the dependency on foreign (expensive) develop-
ers. A Voice Service Development Kit (VSDK) is devel-
oped, which allows web-based voice-service development by
applying and customizing voice interaction building-blocks.
The VSDK has been evaluated by students of the ICT4D1

course at the Vrije Universiteit Amsterdam, who have de-
veloped applications for several ICT4D use-cases using the
VSDK. From the evaluation is concluded that the building-
block approach to voice-service development is successful in
reducing the complexity and allows inexperienced users to
develop simple voice-services in a short time.

Keywords
voice-based services, sub-Saharan Africa, ICT4D, slot-and-
filler, low-resource hardware, digital divide, low literacy, de-
velopment frameworks

1. INTRODUCTION
In sub-Saharan Africa the usage of modern technologies

such as the Internet is still very low compared to highly-
developed countries. Mobile phones (so-called ‘dumbphones’)
however are widely used, even in the rural areas. Previous
research has shown the feasibility and possible applications
for voice-based services offered over the mobile telephone
network, in the rural sub-Saharan African context. (de Boer
et al., 2012) Recent work has made it possible to host voice-
services on low-resource hardware (e.g. a Raspberry Pi com-
puter), which can be owned by local (farmer) communities.
(Baart, 2016b)

This research will look into how the process of voice-
service development and maintenance can be made less com-
plex, with the end-goal of improving the (financial) sustain-
ability of voice-services in sub-Saharan Africa. This docu-

1Information and Communications Technology for Develop-
ment

ment describes the process and results of the building of a
so-called Voice-Service Development Kit (based on the exist-
ing KasaDaka platform), which simplifies large parts of the
development and maintenance processes of voice-services.

1.1 Context
Nowadays in highly developed countries, a connection to

the Internet is available nearly everywhere and a large part
of the population is always online. The Internet has be-
come the main source of information and enables new ways
of working and communicating. Information and Commu-
nication Technologies (ICT) have revolutionized the way of
living and doing business, placing these countries into the era
of the Information Society. (Webster, 2014) The economies
of these countries have become very dependent on ICTs.

In so called ’developing countries’ the situation could not
be more different. The Internet penetration rate in Africa
(in 2016 25%) is far below that of developed regions such
as Europe. (79% ,world average 47%) (ITU, 2016) In ar-
eas such as sub-Saharan Africa, a stable electricity supply
can be hard to come by, let alone a stable connection to
the Internet. Issues including poor infrastructure, lack of
resources, poor education (low literacy), a lack of relevant
content and a lack of experience in the usage of modern
technologies, prevent the large scale adoption of ICT in this
context. (Chapman et al., 2002)

A gap in wealth and quality of life exists between people
that have access to ICTs, and those that do not. This digital
divide (Fuchs et al., 2008) is especially relevant in the rural
communities. Urban areas will usually see a faster adoption
of new technologies, as the necessary infrastructure is usu-
ally constructed in these areas first. This causes an increase
in the inequality between urban and rural areas, in addition
to the already existing digital divide.

1.1.1 ICT4D
The field of ICT for Development (ICT4D) aims to close

the digital divide in the developing world. By applying the
opportunities of computers, the Internet and mobile phones
in the context of development. The goal is to use these
technologies to increase well-being and reduce the problem
of global poverty. The promoting of usage of ’traditional’
ICTs (such as computers and the Internet) was the initial
focus of ICT4D. These efforts were not very successful, as
they turned out to be unsustainable in the developing world
context. While these technologies thrive in highly devel-
oped countries, they do not necessarily satisfy the needs of
a developing country (Toyama, 2010). The focus of ICT4D
has since largely shifted to the usage and implementation



of technologies that are already available and have a large
user base in the developing world. (Heeks, 2008) This new
approach is referred to as ICT4D 2.0.

Recently an approach to ICT4D is suggested (that is to
be called ICT4D 3.0), that focuses primarily on the needs
of the users. This approach takes the user’s goals and ob-
jectives as the starting point of a project and collaborates
closely with the end-users during the co-creation process of
an information service. The technologies that are used are
fully adapted to the local context and use existing local in-
frastructure. (Bon, 2016)

1.2 Motivation
One of the technologies that has become widely adopted

in Africa is the mobile phone. Mobile phones have become
a successful means of communication in sub-Saharan Africa,
having become the main means of telecommunication. The
coverage of networks in rural Africa is good, covering a large
part of the population. “mobile phone subscriptions on the
continent have risen from over 16 million in 2000 to 376
million in 2008 –or one third of sub-Saharan Africa’s popu-
lation”. (Aker et al., 2010) The subscriber penetration rate
in the ECOWAS2 states in 2015 was 47%, with a projected
growth to 55% in 2020. (GSMA, 2016)

This widespread adoption creates many opportunities for
the application of voice services. The network coverage of
remote areas offers opportunities for rural communities and
a possibility of (partially) closing the digital divide. The
usage of existing (and adopted) technologies for new use-
cases fits well within the scope of ICT4D 2.0.

Past research has proven the feasibility of the deploy-
ment of web-like voice-services in the context of sub-Saharan
Africa. The KasaDaka platform3 was created, allowing for
locally hosted voice-services over the local available mobile
telephony network. Voice-services cater exceptionally well
to this context, as they are usable by the illiterate and they
can be accessed by phones already owned by a large amount
of the population.

Voice services for the KasaDaka can be developed in little
time, allowing for a rapid-prototyping workflow in which a
voice-service prototype can be developed in a very small
time (less than an hour). (Baart, 2016b) Use-cases include
a market platform, local journalism platform and a livestock
vaccination scheduling system. Over the past years, several
small scale experiments have been done with these use-cases
(hosted on the KasaDaka) in sub-Saharan Africa. (Gyan et
al., 2013; Chhetri, 2013; Mantel, 2014; Gyan, 2016)

1.2.1 Regreening
The KasaDaka project builds on information and experi-

ence acquired by the Web alliance for Regreening in Africa4

(W4RA). The goal of the W4RA is to support farmer-managed
regreening activities by developing and deploying innovative
ICT applications in order to deliver relevant services to rural
communities in sub-Saharan Africa.

Regreening is a process where farmers manage naturally
regenerating trees on their land, instead of cutting them
down. These trees help in restoring degraded lands, provid-
ing many benefits such as increased crop yields and recharg-

2Economic Community of West African States: http://
www.ecowas.int/
3http://kasadaka.com/
4http://w4ra.org/w4ra/

Figure 1: Ousséni Kindo (farmer in Burkina Faso) show-
ing his land and explaining the agricultural techniques he
practices. Photo credit: Anna Bon

ing groundwater. These effects improve food security and
help to lessen the influence of climate change on agriculture.
(Sendzimir et al., 2011)

The practice of regreening techniques is mainly centered
in the Sahel region, which is the southern border area of
the Sahara desert. Regreening allows for land that was un-
suitable for agriculture due to desertification (mainly lack
of ingress of rainwater into the soil) to become fertile again,
increasing the area of available land for agriculture. (Reij
et al., 2009)

Regreening is a very relevant practice in sub-Saharan Africa,
as the expected population growth in the region (260% pro-
jected growth) will cause a rapid rise in demand for food.
This demand will rise even more because of the changing of
lifestyles and wealth growth in the area. In order to match
this rising demand, rapid growth of crop yield is required
as well as a rapid increase in the amount of land used for
agriculture. (Ittersum et al., 2016)

W4RA partners with local farmers and organizations that
promote regreening in rural communities. The goal is to
improve local agriculture by providing relevant information
services to rural farmers. This improves opportunities and
living conditions of local farmers, increasing their competi-
tiveness in the market and promoting sustainable agriculture
growth.

The KasaDaka platform enables rural farmers to use lo-
cally hosted voice-services. This is achieved by hosting the
services on low-resource hardware, such as a Raspberry Pi
with a GSM dongle for connection to the mobile telephony
network. By using this relatively inexpensive hardware and
free/open-source software the platform is ‘affordable’ for ru-
ral sub-Saharan farmers. This enables them to use indepen-
dent and community hosted information services over their
already owned mobile phone, helping them in their agri-
cultural activities and allowing them to disseminate their
innovative regreening techniques.

1.3 Problem description
In order to enable further research of (and eventually

permanently roll out) locally hosted voice-services in sub-



Saharan Africa, a long term deployment (pilot) is required.
There have been previous long term deployments of voice-
services by the W4RA, however these were on an older plat-
form5 which requires significant infrastructure and is no
longer maintained. (de Boer et al., 2012; Gyan et al., 2013;
Boer et al., 2015) This new deployment can become the ba-
sis for further research on voice services and the KasaDaka
platform. A small-scale but long-term experiment is also
one of the first steps towards a future roll out on a larger
scale.

While previous work has made the KasaDaka into a rapid-
prototyping platform, enabling voice-service prototypes to be
created in a short time frame, there is still significant knowl-
edge and skills required to do so. A deployed voice-service is
currently not maintainable by the (local) owner/maintainer
of the KasaDaka (assumed to be farmer NGOs in rural sub-
Saharan Africa). These local partners (NGOs) have lim-
ited computer knowledge, let alone programming skills. Re-
mote management is hard to implement, as reliable connec-
tions are hard to come by and expensive. This implies that
whenever there are problems, there is a very strong depen-
dency on the team that maintains the software (currently
located at the Vrije Universiteit Amsterdam). Realistically
this means that whenever there is a problem the voice ser-
vices are unusable for some time, until a specialist is flown
in to fix the problem. As long-distance communication on
these specialized subjects is often difficult, it usually takes a
long time for the problem to be resolved. This makes a long-
term roll-out expensive and unrealistic until these problems
are addressed.

1.3.1 Sustainability
In previous research concerning the RadioMarché project

of Gyan (2016), the conclusion has been drawn that a sin-
gle model on the sustainability of voice-services is difficult
to define. Many of the factors are external to the platform
itself, such as ensuring ample funding to pay for the host-
ing of the service and the amount of value provided by the
service.

However, some measures to improve sustainability and
transferability were taken in the RadioMarché project. Lo-
cal ownership is seen as an important aspect, as it removes
the dependence on the support of (commercial) companies
and resources that might not be stable in the long term.
Physical ownership is only half of ’actual ownership’ in this
regard, as a dependency on (foreign) corporations limits the
freedoms of the local community to the vision of these cor-
porations, which often do not correspond to the needs and
desires of the local population. It is important that the local
community is able to host and maintain the voice services, as
well as be able to develop new voice services independently.

Gyan mentions local training initiatives to be a possible
solution to this problem and the VOICES6 (VOice-based
Community-cEntric mobile Services) project has had expe-
riences with setting up mobile training labs with the goal
of sparking local tech-entrepreneurship. (Papeschi et al.,
2011) The general idea is to create a local community of en-
thusiasts, functioning as a technical development and main-
tenance team for voice-services. Training sessions should
be organized in order to provide the community with the

5This was the Emerginov platform by Orange. https://
emerginov.ow2.org/
6http://mvoices.eu/

required technical knowledge for voice-service development.
By allowing the local population to develop applications on
the KasaDaka platform and giving them total freedom to use
and modify the system to fit their community’s needs, voice-
service technology will inevitably be used in many new and
creative ways. Ali et al. (2007) argue that this improvised
use of and tinkering with existing and available technology,
cause unintended applications that often become very suc-
cessful, an activity which is referred to as bricolage. Ac-
cepting that the usage of technology cannot be directed and
that successful innovations often come from unexpected di-
rections, can be a determining factor of success in the field
of ICT4D. By explicitly granting the general population the
freedom to use the technology in any way they see fit, prac-
ticing bricolage is facilitated and the available technology
is likely to (eventually) be applied in a way that is most
relevant and innovative to the local context.

The usage of open standards allows for the usage of open-
data in voice-services, which can bring the advantages of
open-data to the poor, who are often excluded from the
benefits of open-data. The other way around, data gener-
ated from voice-services can be used to improve local policy
and other development efforts. (Davies et al., 2012)

1.3.2 Towards a more sustainable voice-services plat-
form

In conclusion: in order to make the KasaDaka into a plat-
form that can be truly owned by the local population, it
is of importance that a local community can emerge that
is able to develop and maintain voice-services. This prob-
lem should be approached in multiple ways. This research
will focus on one approach, which is to lower the skill-set
needed to develop voice-services on the platform. The goal
of this strategy is to reduce the required prerequisite knowl-
edge for the voice-service development process. This will in
turn lower the barrier of voice-service development, enabling
a larger amount of people to develop voice-services for the
KasaDaka platform.

If the KasaDaka platform succeeds in this, an interna-
tional movement could emerge that develops voice-services
that solve information needs of rural communities around
the world. By not focusing on the development of services
that address a limited set of use-cases, but instead offer-
ing a platform that enables the development and hosting of
voice-service for a low investment; The KasaDaka platform
could contribute to the reduction of poverty and improve
the living conditions of the global poor.

2. RELATED WORK
This section covers existing efforts in ICT4D and the de-

sign and development of voice-services. The voice-service
development solutions described allow the development of
voice-services through a Graphical User Interface (GUI),
which is a logical step towards reducing the complexity of
application development. We will mostly focus on applica-
tions that help in the development of VoiceXML7 (a XML
based language for audio dialogs, see Section 5.2.2) based
voice-services. This choice is made because the goal is that
the resulting system is to be integrated into the existing
KasaDaka platform,which is mostly based on existing open-
source software and standards, in which VoiceXML plays a

7https://www.w3.org/TR/voicexml20/



large role.

2.1 KasaDaka voice services platform
Previous work on the KasaDaka platform has enabled

rapid development of voice services. The KasaDaka plat-
form consists of a Raspberry Pi combined with a GSM don-
gle. The dongle provides a voice connection to the local
GSM/3G network, connecting the calls to the software run-
ning on the Raspberry Pi. Many of the software components
used are open-source, making the platform easily extensible
and less reliant on commercial offerings. (Baart, 2016b)

While rapid development of voice services is possible, ex-
tensive knowledge of VoiceXML, Asterisk8 (an open-source
telephony exchange) and Python9 is required. Currently
there is no GUI-based application for the development of
voice services for the platform and the generating of Voice-
XML is done with Flask10, a Python web-framework. De-
veloping voice-applications for the KasaDaka platform thus
requires the developer to have knowledge and experience
in several standards and services including: Python, Voice-
XML, Asterisk and the usage of POSIX-based operating sys-
tems11. This severely limits the accessibility of voice service
development of sub-Saharan locals, extensive training and
education would be required to start a local voice-service
development community.

2.2 Sugar Desktop Environment
Sugar12 is an open-source graphical environment devel-

oped for the One Laptop Per Child13 (OLPC) project. The
goal of Sugar is to provide a simple and intuitive interface for
school-going children, with the aim of improving the educa-
tion in developing countries. The interface of Sugar mainly
consists of icons and graphical interfaces, with text based-
interfaces offered in more advanced applications, such as
browsing the internet (if there is an internet connection) or
writing a document. The OLPC/Sugar also included peer-
to-peer networking for data exchange in situations where
there is no internet connection. The development of appli-
cations for the Sugar environment uses Python, which makes
the development of applications out of reach for the intended
users of the OLPC. The OLPC project is an example of the
ICT4D 1.0 mindset, in which large numbers of computers
are shipped to developing areas with the expectation that
the local population will educate itself on the usage of these
computers. In reality this did not happen due to a lack
of usage in education programs (educators did not receive
training on the OLPC), hardware and infrastructure prob-
lems (lack of electricity), a lack of adoption (OLPC’s were
not affordable enough for developing countries) and a lack
of usefulness in the local context. (Warschauer et al., 2010)

2.3 DataWinners
DataWinners14 is a data collection platform that is devel-

oped by Human Network International15 (HNI). DataWin-

8http://www.asterisk.org/
9https://www.python.org/

10http://flask.pocoo.org/
11Portable Operating-System Interface: https:
//nl.wikipedia.org/wiki/POSIX

12http://wiki.laptop.org/go/Sugar
13http://one.laptop.org/
14https://www.datawinners.com/
15http://hni.org/

ners enables the development of SMS and smartphone-based
data surveys. These surveys are primarily aimed at the con-
text of NGOs that need to retrieve data from their extension
workers. By using SMS data can be collected without a need
for an Internet connection. In the DataWinners web-based
environment, new data surveys can be created in a graphical
interface. As DataWinners is based on the usage of SMS, it
is not usable by the low literate population.

2.4 RapidSMS
RapidSMS16 is a toolset that allows for the development of

SMS-based services for data collection and other workflows.
RapidSMS is developed by UNICEF and has been used for
various use cases, including remote health diagnostics and
nutrition surveillance. RapidSMS is open-source and very
scalable to suit large deployments, but can also run on a low-
end server with a GSM modem. The data collected through
SMS can be published online automatically, and Internet-
accessible information can be provided to the user through
SMS.

2.5 Aspect CXP/Designer (Voxeo)
A commercial and well-known platform for voice-service

development is made by Aspect17 (former Voxeo) and is
called the CXP18 (Customer Experience Platform). A com-
ponent of CXP is called the Developer, which has a graphical
interface for designing voice services. (see Figure 4) The fo-
cus of the CXP software lies in multi-modal applications,
i.e. designing an application for multiple channels such as:
voice, SMS, video and the mobile web. Earlier versions of
CXP designer were built on the Eclipse19 IDE (Integrated
Development Environment) platform.20.

Another software by Aspect is the Designer, which ”makes
it easy for developers and non-developers alike to create and
deploy simple commercial-grade IVR applications in a Visio-
like environment”21. The designer generates VoiceXML files
that can be used in an existing or Voxeo based hosting so-
lution. Designer is integrated in the (commercial) Voxeo
Prophecy platform. Screenshots of the Designer software
are included in Figures 5 & 6.

The graphical interface offered by Aspect’s products is an
example of how the development of voice-services can be im-
plemented in a graphical manner, by combining a graphical
overview of the call-flow, combined with templates of inter-
actions that can be used to build the service. A limitation
for use in the ICT4D context, is the intensive usage of TTS
and ASR technologies in the interactions offered. Both of
these technologies are not available in the under-resourced
languages that are spoken in sub-Sahara Africa. (see Sec-
tion 4.1.1)

16https://www.rapidsms.org/
17https://www.aspect.com/
18https://www.aspect.com/nl/solutions/self-service/
customer-experience-platform-cxp

19https://eclipse.org/
20https://marketplace.eclipse.org/content/
voxeo-cxp-developer

21https://evolution.voxeo.com/docs/platforms.jsp
22Source:http://wiki.laptop.org/go/Sugar
23Source:http://hni.org/what-we-do/data-collection/
datawinners/

24Source:http://help.voxeo.com/go/help/vo.cxp16.
designguide.dialogflow



Figure 2: Screenshot of the Sugar desktop environment.22

Figure 3: Screenshot of the DataWinners interface for the
development of SMS-based data surveys.23

Figure 4: Screenshot of the Aspect CXP Developer interface
for call flow development.24

Figure 5: Screenshot of the Voxeo Designer interface call
flow visualization.25

2.6 Blueworx toolkit
Another commercial VoiceXML development solution is

the Blueworx toolkit29 (formerly known as IBM WebSphere
Voice Response30). The toolkit is (just like former versions
of Voxeo CXP) built upon the Eclipse IDE platform and
produces VoiceXML that is intended to be deployed on the
WebSphere/Blueworx platform. The toolkit includes a vi-
sual call flow designing interface, in a different style than
that of Voxeo/Aspect.

The graphical development interface offered by Blueworx
bears a general resemblance to the interface offered by the
Scratch31 programming language. However changing the
settings of each of the elements in the service still requires
significant knowledge of the inner workings of the underly-
ing mechanisms. Furthermore, as Blueworx is based on the
Eclipse platform, installation of software on the developers
computer is required and the developer needs to gain expe-
rience in working with Eclipse.

2.7 Twilio Studio
While Twilio Studio32 does not use VoiceXML but Twilio’s

proprietary language TwiML33, it does provide a easy to use
interface for building voice-services. Twilio Studio allows

25Source: Voxeo Prophecy software, available for download
from:https://www.aspect.com/voxeo

26Source: Voxeo Prophecy software, available for download
from:https://www.aspect.com/voxeo

27Source: https://www.ibm.com/support/knowledgecenter/
SSKNG6 6.1.0/com.ibm.wvraix.geninf.doc/i1671052.html

28Source: https://www.twilio.com/docs/api/studio
29http://www.blueworx.com/use-the-blueworx-toolkit/
30http://www.waterfieldtechnologies.com/
wti-acquires-ibm-websphere-voice-response/

31https://scratch.mit.edu/
32https://www.twilio.com/docs/api/studio
33https://www.twilio.com/docs/api/twiml



Figure 6: Screenshot of the Voxeo Designer voice service
functionality options.26

Figure 7: Screenshot of the IBM WebSphere Voice Response
Communication Flow Builder (version 6.1).27

Figure 8: Screenshot of the interface of Twilio Studio.28

voice-service development by dragging widgets into the call
flow, which are the components in a voice service. Through
an inspector panel these widgets can be configured in more
detail. Twilio Studio is entirely web-based and is hosted by
Twilio.

The graphical development methodology offered by Twilio
Studio seems to be very user-friendly and simple to use.
However the usability of voice-services created in Twilio
Studio is limited to the Twilio platform, which does not
allow the purchase of phone numbers in many of the coun-
tries where ICT4D voice-services are relevant. Twilio Stu-
dio seems to not be usable without an Internet connection,
which can not be assumed to be available in the ICT4D con-
text. Furthermore, just like the previous examples Twilio
makes intensive usage of TTS and ASR technologies, which
are not available in the ICT4D context.

2.8 Suitability of related work in the ICT4D
context

The conclusion that can be drawn from the discussed ex-
amples of voice-service development environments, is that
there are serveral products that provide the functionality
of visual voice-service development. However all of the ex-
amples are commercial products, which severely limits their
usability in the ICT4D context. (see Section 4.1.2) While
many of the examples use VoiceXML and thus produce plat-
form independent voice-applications, actually integrating them
in a voice-service hosting platform suitable for the ICT4D
context (i.e. the KasaDaka platform) is no trivial task. Be-
sides these constraints there are several other issues limit the
usability in the ICT4D context, such as the use of TTS/ASR,
requirement of Internet connection and limiting methods for
data management.

The methodologies offered for the development of voice-
services in the discussed examples succeed in reducing the
complexity of voice-service development. While some of
the implementations of graphical development are more ad-
vanced than others, the general methodology used in the
environments is the building of voice-services by applying
provided templates for interactions. These templates pro-
vide a basic interaction type, such as a choice, the play-
back of a message or requesting and recording user input.
(see Figure 6) By applying these interaction templates as
building-blocks for the development of a voice-service, it be-
comes possible to build a voice-service without interacting
with the underlying (VoiceXML) code. This methodology
of voice-service development is comparable to component-
oriented software development. (Nierstrasz et al., 1992)

How the resulting system that was built in this research
fits into the bigger picture of voice-service development en-
vironments, is discussed in Section 8.

3. HYPOTHESIS AND METHODOLOGY
The goal of this research is to develop methods that allow

voice-service development by users that do not have expe-
rience in the underlying technologies. These methods have
the goal of simplifying the development process, which re-
duces the barrier of entry into voice-service development.
In the ICT4D context this simplification reduces the (knowl-
edge) requirements of voice-service developers and maintain-
ers, making it possible for sub-Saharan agents (e.g. NGO
workers) to develop and maintain local voice-services. This
significantly reduces the cost involved with voice-service de-



velopment and maintenance, as well as reducing the depen-
dency on external support and foreign corporations. Both
of these effects play a large role in improving the (finan-
cial) sustainability of voice-services in the ICT4D context of
sub-Saharan Africa. The preferred approach to simplifying
voice-service development and maintenance is by develop-
ing a graphical application for voice-service development,
which facilitates the development of voice-services without
requiring the user to write code. By providing the user with
a set of possible interaction templates (which can be con-
sidered to be voice-service building blocks), the user can se-
lect, customize and deploy these templates to create a simple
voice-application. This application will be referred to as the
Voice-Service Development Kit, or VSDK in short.

These above defined goals lead to the following main hy-
pothesis:

The interactions found in voice-based applications in the
ICT4D context can be generalized to a small set of inter-
action types. By providing building-blocks for these interac-
tions inexperienced users can build simple voice-applications34

by deploying and customizing these building-blocks.

This hypothesis leads to the following research questions:

1. What are the requirements of a VSDK that enables
the target user group to develop voice-applications?
What does the sub-Saharan African ICT4D context
contribute to these?

2. Which technologies are suitable to be used in the VSDK?

3. Does the resulting VSDK result in an improved ease
of use in voice service development?

3.1 Methodology

3.1.1 Defining requirements
The first step is to analyze and gain insights on the con-

text of ICT4D in sub-Saharan Africa and voice-services in
particular. This insight is acquired by reading and analyz-
ing relevant literature on this subject, as well as doing field
trips to the area. During research projects of the W4RA the
researcher has visited Burkina Faso and Mali. Due to the
security situation in Mali, the visit to Mali did not include
actual field visits but did include visits to local farmer and
rural radio organizations. (Baart, 2016a) The visit to Burk-
ina Faso included a workshop with local farmer-innovators,
where the researcher developed a demo application in the
local language. (Baart, 2017b)

The VOICES project (in which the W4RA participated)
provided several trip reports and valuable experiences in the
development and deployment of voice-services in the ICT4D
and regreening contexts. (Gyan et al., 2013; Akkermans et
al., 2013; Gyan, 2016) The experiences in this project have
contributed extensively to the development of the KasaDaka
platform, allowing for the hosting of voice-services on low-
resource hardware. The VSDK is aimed to be an extension
to the KasaDaka platform, and thus inherits many of the
requirements of the KasaDaka platform. (Baart, 2016b) Af-
ter the context and requirements of the VSDK have become

34Voice-applications that rely on DTMF for user-interaction,
do not use TTS or ASR and that do not involve data pro-
cessing.

clear, appropriate technologies have to be selected to form
the VSDK architecture.

3.1.2 Development
With the preparatory work of defining requirements and

choosing a development methodology done, the development
of the VSDK can commence. The development phase will
consist of building a system that allows for the development
of voice-services, reducing the complexity of this task and
the knowledge required to do so. The system will be inte-
grated in to the existing KasaDaka platform, allowing for it
to be used in the ICT4D context of sub-Saharan Africa.

3.1.3 Evaluation
After the development phase has ended (and a working

version is available) the VSDK will be evaluated. This eval-
uation will be performed by groups of students that follow
the ICT4D Master’s course at the VU. The ICT4D course
contains a practical part, in which the students develop
their own voice-application for a specific ICT4D use-case.
The students have previously used Voxeo Evolution and the
KasaDaka platform, and during the 2017 course the students
will use the VSDK to develop their voice-applications. The
achievements and resulting voice-services of the students will
be analyzed to determine the usability and capabilities of
the VSDK, by developing applications for several ICT4D
use-cases. (these use-cases are described in Appendix A)
After the students have completed the practical part, they
will be asked to fill in a survey containing relevant ques-
tions about their experience with the VSDK. The data from
this survey will also be used to further evaluate the VSDK
and determine changes and improvements for a next devel-
opment iteration. Additional development iterations will be
likely be necessary in order for the VSDK to mature and
progress towards a pilot of the VSDK in the Sahel, but will
fall outside of the scope of this research (due to time con-
straints).

4. REQUIREMENTS
This section will describe the requirements of the VSDK,

which result from the goal of designing and building a de-
velopment kit for voice services in the ICT4D context of
sub-Saharan Africa.

4.1 Voice-services in sub-Saharan Africa
The process of developing and hosting a voice-service dif-

fers greatly depending on which part of the world it takes
place in. While in highly developed countries (such as the
United States and most of the countries in western Europe)
the (digital) infrastructure, that is required for the develop-
ment and hosting of software applications, is well developed
and reliable; The opposite is the case in many developing
countries where there is little infrastructure, and infrastruc-
ture usage is unreliable and (very) expensive. Besides in-
frastructure there are also economic and societal aspects
that require consideration when designing and developing
software. These constraints pose ‘unusual’ requirements on
applications, but which are essential to the success of an
application in the ICT4D context.

4.1.1 Societal challenges
Literacy rates in some countries of sub-Saharan Africa are

relatively low compared to the rest of the world, in Burkina



Figure 9: An example of the targeted usage environ-
ment of ICT4D voice-applications. Photo taken outside
Ouahigouya, Burkina Faso.

Faso, Mali and Niger literacy rates are below 40%. (UN-
ESCO, 2011) One of the consequences of this is that an in-
formation service targeted at this population must not use
written text, but instead use for instance icons, voice or
video to convey information.

While most of (sub-Saharan) Africa’s countries are for-
mer colonies and thus have European languages as an of-
ficial language, large parts of the population do not speak
these languages. Rather, the local population speaks their
own indigenous language, which is tied to their local region.
Africa has around 2000 local languages, which each often
have local dialects. (Heine et al., 2000) The majority of
these languages are spoken languages, meaning that there is
almost no literature in these languages. Furthermore, due
to the population speaking these language is poor, these
populations do not provide a profitable market for the de-
velopment of TTS and ASR technologies in these languages.
Taking into account these restrictions, these languages can
be considered to be under-resourced languages. (Berment,
2004)

Most of the recently developed voice platforms that of-
fer complex information services (e.g. Apple’s Siri, Ama-
zon Alexa, etc) make extensive use of Text-to-Speech, Au-
tomatic Speech Recognition and Natural Language Process-
ing technologies. While these technologies are in wildspread
use around the world, they require significant research and
a lot of work in order to support a lanugage at a level that
is sufficient for the usage in voice services. (Bagshaw et
al., 2011; Black et al., 2000; Farrugia, 2005; McTear et al.,
2016a) The number of languages that has well developed
speech technologies is rising, but do (almost) not include any
of the indigenous languages found in (sub-Saharan) Africa.
When developing a voice-service, either these technologies
have to be devloped to support these under-resourced lan-
guages, or the usage of these technologies is not feasible.
While there are methodologies for the development of speech
technologies in under-resourced languages, they are very re-
source intensive and are (especially in the case of spoken
languages) very hard to automate. (Besacier et al., 2014;
Vries et al., 2014) To solve this problem the VSDK should

support the usage of pre-recorded audio fragments and thus
function without the use of TTS, ASR or NLP. It should also
be able to support many different languages simultaneously.

Previous experience from field visits has shown that an-
other challenge of the sub-Saharan target user group is the
little experience these users have with using technology and
information systems. (Baart, 2017b) When developing a
voice service it is thus important to make the interactions
as simple as possible, taking in to account the low level of
experience and guiding the user in the usage of the appli-
cation. This low level of experience also makes it difficult
for end-users to a priori state their needs in terms of func-
tionalities. This makes the agile development methodology
a good fit, as creating a voice-service using the traditional
methodologies (such as the waterfall model) will almost cer-
tainly not produce the service the end-user ‘wanted’. Thus it
is likely that iterations during development will be required
in order to achieve the desired functionality of the service.
The VSDK should be able to support the agile development
methodology, reducing the work required to make changes
to a voice service to a minimum.

4.1.2 Resource and infrastructure constraints
The countries in sub-Sahara Africa are some of the poorest

in the world, the majority of the population in Mali and
Burkina Faso (the targeted countries in this research) lives
on less than e 2 per day.35 In order for a voice-service to
be of use to the general population, the cost of accessing
and using it thus have to be very low. This implies that the
users should be able to access the service without having to
purchase a new device or service, but rather using a device
they already own or have access to (e.g. a simple mobile
phone, see section 1.2). The initial and running costs of
a voice service should also be low enough to be affordable
(and to provide sufficient return on interest) for the rural
sub-Saharan population. The VSDK should allow the use
of information services by simple mobile phones, which does
not require the end-users to purchase a new device.

The (digital) infrastructure in these countries is unreli-
able and expensive, especially in the rural areas. While
some villages have access to electricity, it is often unreli-
able. The majority of the population does not have (direct)
access to electricity.36 Access to internet is slowly becoming
more common, (Poushter, 2016) but is very expensive and
unreliable37, due to a lack of local hosting and limited in-
ternational (sea fiber) connections. Mobile networks have a
good level of coverage, but are mostly 2G (voice and SMS
only) in rural areas. While rates are not ‘affordable’, the
usage of simple mobile phones is very widespread. (GSMA,
2016) Most people either own a (simple) mobile phone or
share a mobile phone with family. In order for a service
to be successful in this context, it should be able to run
without relying on a stable power supply and internet con-
nectivity and be accessible through existing mobile phones.
The VSDK should be able to facilitate voice-service hosting
and development without an internet connection.

Because of the above constraints, a very small amount
of the population owns (or has access to) a computer. As

35https://data.worldbank.org/indicator/NY.GDP.PCAP.
CD?locations=ZF

36https://data.worldbank.org/indicator/EG.ELC.ACCS.
ZS?end=2014&locations=ML&start=2014&view=map

37http://100mega.ml/



such, there are only very few local technicians that are able
to maintain local infrastructure and systems. The amount
of technicians that have experience with voice-services will
thus likely be extremely low. The implication of this is that
in practice, maintenance will have to be done remotely or
by flying in maintenance personnel, or by training local per-
sonnel. Because the infrastructure is often insufficient for
remote maintenance (and the hardware/software providing
the connection may fail as well), maintenance will probably
require physical access to the device running the service. In
order to keep maintenance costs to a minimum, the VSDK
should be very reliable and allow for easy testing and prob-
lem diagnosis, reducing the amount of problems and the
work required to fix them.

4.2 Sustainability
The long-term functioning of voice-services should be en-

sured for long after an initial deployment (and funding), if a
long-term value to the development of the local community
is desired. (Gyan, 2016) In order to achieve this, voice-
services should be financially self-supporting. As the target
user group is very poor, the amount that they are able to pay
for a service will not be high and thus is unlikely to change.
This implies that the elements that influence the costs (both
initial and recurring) of running a service are essential to the
financial sustainability of a service, i.e. these costs should
be as low as possible. The costs of a service are determined
by several factors, which are described in Table 1.

These costs vary depending on the complexity of the ap-
plication and the relevant context. As this research mainly
focuses on relatively small deployments of services, targeting
small-scale farmers in sub-Sahara Africa, the costs of devel-
opment and maintenance are relatively high. As services
are highly customized to the local community, it requires a
relatively high amount of work in relation to the amount of
users and calls the service handles. This makes a service
expensive, as the development costs are spread over a low
number of users. There are many strategies that can be used
to reduce the costs of a service, a few of which are described
in Table 1.

4.2.1 Enabling local development and maintenance
As stated previously, the cost of the labor in develop-

ment and maintenance of the service represents the major-
ity of the costs involved with a voice service. A factor that
causes these costs to (relatively) be even higher, is the differ-
ence in labor costs between the sub-Saharan countries and
highly developed countries such as Europe (not to mention
the travel expenses). It is thus of importance to speed up
the development process in order to save costs. To reduce
these costs even further, there should be sufficient local tech-
nical personnel to develop and support voice-services, which
also eliminates the dependency on foreign developers. How-
ever previous field visits have shown that because of the
low computer-literacy, local developers are hard to come by
in many sub-Saharan African countries.38 Because of this,
creating a local ‘developer community’ for voice services cur-

38There are no figures of the amount of develop-
ers in sub-Sahara Africa, but the usage of GitHub
could be considered to be an indicator of the amount
of (open-source) developers: https://hackernoon.
com/the-map-i-got-for-africa-8c8a958c686d, https:
//blog.ona.io/general/2015/01/01/github-africa-2015.html

rently seems to be far into the future. To at least achieve
some of the cost savings, the underlying system that is used
to develop voice-services should be as very easy, ideally not
requiring programming experience. This should allow lo-
cal workers with intermediate computer-literacy to perform
simple maintenance tasks, after having received adequate
training, addressing the lack of local developers. (Gyan,
2016)

4.3 Enabling voice-service development
Besides catering to the targeted usage context, the VSDK

has to reduce the complexity and required knowledge for
developing voice-applications. In order to achieve this sim-
plification, it should be possible to develop a voice-service
(prototype) within a GUI-based application, that does not
require the developer to write VoiceXML or other code. The
VSDK has to run on the existing KasaDaka platform and
not require any additional installation on the developer’s
computer (or other device). The VSDK should (together
with the documentation) guide the developer through the
process of developing their first voice-application, reducing
the risk of getting stuck by (often made) mistakes.

The process of application development that the VSDK
provides should be based on component-oriented software
development: providing the user with pre-packaged com-
ponents that can be applied to build an application. (Nier-
strasz et al., 1992) In this paper we will refer to this approach
as the building-block approach, which can be implemented
in the context of voice-services by providing templates for
different types of interactions that are commonly used in
voice-services. The developer should be able to build voice-
services by applying and customizing these templates and
build a (simple) voice service from a graphical user inter-
face.

The applications that can be built by the VSDK should
be able to support all languages and not require the use
of Text-to-Speech technology. The VSDK should be able
to record and store the end-user’s language preference, and
recognize users by their phone number (caller ID).

Interaction (without the use of TTS) takes place in the
form of key presses using the user’s phone keypad (DTMF39)
to choose options in a menu of choices. In addition to key
presses, voice-applications should also be able to record (and
store) the user’s voice, for inputs that are too complex for
DTMF-based interactions. These inputs do not have to be
processed further by the VSDK.

The VSDK has to include basic logging functionality, al-
lowing for the analysis of the usage of a voice-service. The
VSDK should be able to capture and store information about
the call and the ‘path’ the user took through the application,
as well as any inputs the VSDK received.

4.4 Summary of requirements
In order to get an overview of the (non-)explicit require-

ments posed in the previous sections, this is a summary of
the requirements for the VSDK. The requirements are cate-
gorized in functional and non-functional requirements.

4.4.1 Functional requirements

• Should be able to support the development and hosting
of DTMF-based voice-services.

39Dual Tone Multi-Frequency



Table 1: Costs of a voice-service

Category Description Strategy to reduce costs
Development Costs of initial development of the voice-service.

These costs mainly consist of developer salaries
and software license costs.

Reduce and simplify the work required to develop
a voice service. Use software components that are
free and preferably open-source. (Nissilä, 2016)

Hardware The costs of buying hardware for hosting the
service.

Use hardware that is cheap to purchase and adapts
well to the context (see section 4.1.2).

Infrastructure The costs of using the telephony network (and
internet connectivity). From the point of the
voice-service this excludes the costs that users
incur when calling into the service.

Ensure a good negotiating position versus
telephone companies (telcos). This implies that
the service platform should be independent of the
underlying telephone infrastructure and switching
between telcos should be simple.

Hardware
maintenance

The cost of diagnosing problems and repairing or
replacing hardware.

Use hardware that is reliable and easy to replace
with low replacement costs.

Software
maintenance

Costs of developers to fix problems and adapt the
service to changing needs and contexts.

Simplify the maintenance process and the process
of adapting a service to fit changing contexts.
Using software components in a modular fashion
allows for easy switching out components.

• Needs to be able to support the development of voice-
services in all languages, this includes under-resourced
languages. New languages can be added with minimal
effort.

• Facilitate voice-service development from within a GUI.
• Provide building-blocks for the development of voice-

services.
• Detect and notify the developer of design errors in the

voice-application.
• Allow for the recording and storage of the user’s input.
• User detection by caller ID, keeping track of the user’s

(language) preference(s).
• Include basic logging functionality, keeping track of the

handled calls.

4.4.2 Non-functional requirements

• Should function reliably with minimal infrastructure,
e.g. without an internet connection.

• Should not require TTS, ASR and NLP technologies.
• Needs to support an agile development workflow.
• Does not require the installation of software on the

developer’s computer.
• Needs to run on the existing KasaDaka platform (Rasp-

berry Pi).
• Should include documentation and guide the user when

possible.

5. SYSTEM ARCHITECTURE
This section will explain the architecture of the KasaDaka

and the role of the VSDK in the overall architecture (visu-
alized in Figure 10).

The inner workings and architecture of the VSDK will be
discussed in Section 6.

We will start by covering all hardware and software com-
ponents involved in the KasaDaka platform, which enable
the system to serve information services over a phone con-
nection. The functionality of each component will be de-
scribed, as well as the rationale behind choosing for this
specific component in relation to the previously described
requirements.

5.1 Hardware
The hardware forming the foundation of the KasaDaka

platform is the Raspberry Pi, which is a low-resource com-
puter based on an ARM processor (like found in many smart-
phones). The main advantages of the Raspberry Pi are it’s
low power consumption (and subsequently low need for cool-
ing), good on-board connectivity and the low price40. (and
thus also a low replacement cost, see Table 1) The Raspberry
Pi is a very popular product for experimentation and many
projects, and is thus widely available. This makes it easy to
replace should problems arise. The Raspberry Pi runs sev-
eral distributions of Linux, of which Raspbian is a popular
Debian based distribution. Almost all open-source software
is available for the Raspberry Pi through Raspbian’s package
manager.

To provide the Raspberry Pi with connectivity to the local
mobile phone network, a USB 3G modem is used. The exact
make and model of this modem does not make much of a
difference, as long as it is on the supported hardware list41

of the chan_dongle Asterisk extension. (see Section 5.2.1)

5.2 Software
As mentioned when introducing the Raspberry Pi, the

operating system running on the Raspberry Pi is Raspbian,
which is based on Debian (a popular Linux distribution). On
top of the Operating System run several applications that
work together to provide the voice-service functionality.

5.2.1 Telephone exchange software: Asterisk
Asterisk is a very popular open-source Private Branch Ex-

change (PBX) telephony application. It is able to route calls
from an incoming connection to it’s destination using Voice-
over-IP technologies. In the use-case of the KasaDaka plat-
form Asterisk provides the connection between the phone
network (3G dongle) and the VoiceXML interpreter. To en-
able Asterisk to interface with the 3G dongle an extension is
required. chan_dongle42 is an open-source Asterisk exten-

40A Raspberry Pi 3 (including case, power supply and SD
card) costs around e 60 at the time of writing.

41https://github.com/bg111/asterisk-chan-dongle/wiki/
Requirements-and-Limitations

42https://github.com/bg111/asterisk-chan-dongle



Table 2: Description of flow through Figure 10

Label Description
Text in italics describes events that only take place when the call is first initiated.

A1 An user (in this case a West-African farmer) calls the number of the SIM that is in the GSM modem of the
KasaDaka. This call is routed through the local mobile-phone network and arrives at the KasaDaka’s modem.
The user presses a key on the mobile phone, expressing a choice in the voice-interface, or speaks some input.
The phone sends a DTMF signal on the phone connection, and/or sends the speech from the microphone
over the connection.

A2 After the GSM modem has received the incoming call from the GSM network, the chan_dongle Asterisk
extension accepts the call.
The modem receives the user input (DTMF and/or speech) from the network and the input is processed by
chan_dongle.

A3 The call is routed by Asterisk to the VoiceXML browser (VXI). This routing is configured in the Asterisk
extensions configuration file. This file also contains the URL of the VoiceXML document that VXI should
load when accepting the call.

A4 VXI loads the VoiceXML URL defined in the configuration. This URL points to the initial VoiceXML
document of the Voice-Service, which is hosted locally on the Raspberry Pi. The web-server (Apache2)
handles this request.
VXI determines what action should be performed based on the user input. These possible actions include:
loading a VoiceXML document (including the user’s input in the HTTP request) and presenting another
element in the already loaded VoiceXML document. If the latter is the case, VXI does not load a new
VoiceXML document. (this skips A4 to A11, flow continues with A12)

A5 The web-server accepts the HTTP request of the VoiceXML file. The URL points to a voice-service hosted
on the VSDK. The VSDK generates the VoiceXML files on-the-fly based on dynamic information stored in
it’s database. Any user input contained in the HTTP request is processed by the VSDK.

A6 The VSDK runs the necessary queries on the SQL database to generate the VoiceXML file, as well as store
any new data from this call in the database. The database contains the structure of the voice-application,
references to audio-fragments, as well as user-generated data and call logs.

A7 The VSDK returns the generated VoiceXML file to the web-server.
A8 The web-server serves the VoiceXML file through the HTTP connection to the VoiceXML interpreter.
A9 The VoiceXML interpreter parses the VoiceXML file. The VoiceXML file contains many references to audio

files, which contain the spoken information. (see Section 6.3) In order to be able to play these audio files to
the user, the VoiceXML interpreter proceeds by requesting each of the referenced audio files.

A10 The web-server receives the requests for the audio files. As these files are static they are retrieved from the
file system.

A11 The web-server serves the audio files to the VoiceXML interpreter, which now has all necessary elements to
present the VoiceXML file over the phone connection to the user.

A12 The VoiceXML interpreter ‘displays’ the interaction to the user by playing back the audio fragments
referenced in the VoiceXML file generated by the VSDK.

A13 chan_dongle receives the audio on the phone connection generated by the VoiceXML interpreter and sends
it to the GSM modem, which in turn sends it to the GSM network.

A14 The user hears the audio from the application through his/her mobile phone.
The above described cycle repeats until the user has performed all desired tasks and either the VSDK
generated VoiceXML document or the user terminates the connection.

B1 The user connects a device (smartphone or laptop) to the local wireless network, which is broadcast by the
Raspberry Pi. The user accesses the administrator interface through the browser.

B2 The HTTP request arrives at the web-server. This request may include input from the user.
B3 The request is forwarded to the VSDK, which processes the request (and included user input) and generates

the responding HTML web-page.
B4 The VSDK retrieves and stores/changes necessary data in the database.
B5 The VSDK returns the generated web-page to the web-server.
B6 The web-server serves the VSDK administrator interface page to the user’s browser.
B7 The web-page is rendered and presented to the user.



Figure 10: Overview of the KasaDaka system architecture

sion that provides connectivity between GSM/3G modems
and Asterisk. It enables Asterisk to receive and place calls
using the connected modem, as well as send and receive SMS
messages.

5.2.2 Voice application document standard: Voice-
XML

VoiceXML43 is a document standard for voice applica-
tions, based on XML. It is a standard designed by the World
Wide Web Consortium and is used for creating documents
that describe voice-based interactions. It supports interac-
tive voice dialogues between the computer and the user and
usually contains written text that is later processed by a
TTS engine. Responses by the user can happen through
pressing a number on the phones keypad of by speaking (for
this ASR needs to be available). As the voice applications
that use the KasaDaka framework mainly focus on under-
resourced languages, the use of TTS and ASR is not possible.
Fortunately VoiceXML also supports the playback of audio
files, much alike embedding an image in an HTML page.
This allows the use of pre-recorded fragments to build up the
voice services, but restricts the way of interaction to using

43https://www.w3.org/TR/voicexml21/

the phone’s keypad. A VoiceXML document is ‘rendered’
for the user in a way that is comparable to the rendering of
a HTML file in a web-browser, but in this case is done by a
voice browser.

5.2.3 VoiceXML interpreter: VXI
The software component that is used for ‘rendering’ Voice-

XML files is VXI44, a closed-source VoiceXML interpreter
built by the company I6NET45. VXI connects with Asterisk
as an end-point for incoming calls. When a call is redirected
to VoiceXML a pre-configured URL is passed on to VXI,
which it loads and ‘displays’ to the user as initial voice in-
teraction. Normally this is the principal document belonging
to a voice-service.

VXI currently is the only closed-source component used
in the KasaDaka platform. While the goal is to use only
open-source software, there are little open-source VoiceXML
interpreter projects. A large project that would have the
required functionalities, called voiceglue has been unmain-
tained for a long time and only runs on very old versions

44http://www.i6net.com/technology/voicexml-ivr/
45http://www.i6net.com/



of Ubuntu46. Committing to using voiceglue would thus re-
strict the framework to running on very old software, which
makes it a bad choice. Furthermore, it is unknown whether
voiceglue will run on ARM-architecture based systems such
as the Raspberry Pi. Fortunately VXI includes a testing li-
cense, which allows VXI to be used free of charge, with the
limitation of supporting only one concurrent call. For the
use-case of the KasaDaka this is not (yet) a problem, as the
current use-cases do not require a concurrent calls.

5.2.4 HTTP server: Apache
VXI loads the VoiceXML files it interprets over a HTTP

connection, just like loading a HTML page on the web, but
locally. In order to serve these files (and the audio files
that are referenced in the VoiceXML files), a web server is
required. There are many open-source web-servers, one of
the most used is Apache 2.47 As the web-server fulfills a
relatively simple role in the platform, the web-server used
does not matter very much.

5.2.5 Database: MariaDB
As a data-store MariaDB48 is used as a SQL server. Mari-

aDB is an open-source fork of the well known MySQL database
server software.

SQL was chosen to use for the VSDK instead of noSQL
(linked-data was used previously in the KasaDaka frame-
work) for the VSDK, because MySQL is more common and
well-known by developers. Additionally it is supported out-
of-the-box by many frameworks, such as Django. This low-
ers the barrier of entry to developing custom voice-services
using the VSDK, as in most cases developers do not need to
learn a new database concept.

5.2.6 VSDK development framework: Django (Python)
In order to make the VSDK easy to extend by develop-

ers, Python was the programming language of choice as it
is a popular language that is well supported and has sev-
eral popular web-frameworks. As VoiceXML documents are
comparable to HTML documents, most web-frameworks can
also be used to generate VoiceXML files. Django49 was
chosen as the Python web-framework, as it has very good
and extensive documentation, is well-supported and follows
a Model-View-Controller methodology, giving structure for
inexperienced developers. (Krasner et al., 1988) Django is
open-source and has a rich collection of projects and libraries
that can be used to extend it’s functionality. The MVC
methodology used by Django includes automatic database-
structure generations (migrations) based on the models that
are defined. Furthermore Django also has a built-in ad-
ministrator interface which allows the management of the
data within the application. Based on the defined models,
appropriate management interfaces are generated automati-
cally, which can be extended or changed if necessary. These
features greatly reduce the amount of work the developer
has to do when developing a new application, which makes
Django a good framework to enable the VSDK to be used for
rapid-prototyping. Django has a good implementation of in-
ternationalization functionalities, which enable the interface
of the administrator interface to be translated to different

46A popular distribution of Linux
47https://httpd.apache.org/
48https://mariadb.org/
49https://www.djangoproject.com/

languages. This functionality is of great importance when
developing applications in an international context.

In Section 6 the role of Django in the VSDK is explained
in more detail.

5.3 Interaction diagram of software compo-
nents

In Figure 10, the previously described components of the
architecture of the KasaDaka are shown. In order to gain
a better understanding of the role that these components
fulfill and how they work together, the flow through these
components are described for the two main use-cases of the
KasaDaka:

(A) An end-user (farmer) calling a voice-service hosted on
the KasaDaka In this use case is the main purpose of
the KasaDaka platform: offer voice-based information
services.

(B) A voice-service maintainer/developer accesses the VSDK
to monitor or change a voice-service

A detailed description of these flows and the interactions
between the components in the architecture are described
in Table 2.

6. VSDK FEATURES AND DESIGN DECI-
SIONS

This section describes the features, as well as the chal-
lenges and corresponding solutions that were implemented
in the VSDK.

6.1 Design and development of voice services
The main goal of the VSDK is to support the development

of voice-services in the ICT4D context. As the voice services
are hosted on a Raspberry Pi and internet connectivity is
not to be expected, the development of voice services has
to happen offline, but connected to the Raspberry Pi that
will be hosting the application. Using a web-based interface
is preferable to running a development environment on a
computer because it solves problems with compatibility (dif-
ferent devices, operating systems) and reduces complexity
(does not require installation of software). Another advan-
tage of this approach is that the development and hosting of
the service are integrated, allowing for instantaneous results
(and testing) of changes made to the application.

The Django framework provides a built-in administrator
web-interface, which allows management of the data in the
application. From the data models used in the application,
Django generates simple but appropriate management inter-
faces that can be extended or overridden to adapt to more
advanced workflows. Using this built-in functionality saves
a lot of effort in not having to build an interface for the data
stored in the application.

The structure of the voice-application is stored in the
database, using Django’s model functionality. When an el-
ement in the voice-application is requested by the user in
a phone call, the VoiceXML interpreter (VXI) requests the
element through HTTP. Django then retrieves the informa-
tion about this element from the database, and uses a view
to ‘render’ the element in VoiceXML. The VoiceXML inter-
preter then interprets this VoiceXML file and ‘displays’ it to
the user.



Figure 11: A visualization of the Django internal architec-
ture.

6.1.1 Voice-application structures
While the interactions in voice services are always dif-

ferent, most of them can be generalized to a small set of
interaction types, such as making a choice, playing back an
audio message, or recording (voice) input of the user. The
VSDK provides a set of these building-blocks, which consist
of a VoiceXML template, view and an administrator inter-
face to use and customize them. The current set (which
will be expanded in the future, see Section 10.1) consists of
a menu-based interaction Recording of user voice and the
playback of a message. This set is sufficient for the develop-
ment of simple voice-services.

6.1.2 VoiceXML generation
As mentioned in Section 5.2.6, Django is based on the

MVC principle. The views define which data is presented
to the user, and when a view is called (by a request from a
browser) this data is processed by a template (which places
the data in a HTML page). However as VoiceXML docu-
ments are much alike HTML (web-)pages, the template can
also define the file structure of a VoiceXML file. In this way
the VoiceXML files for voice-services are dynamically gen-
erated, in the same way as web-applications would generate
HTML pages. The internal architecture of Django as imple-
mented in the VSDK is shown in Figure 11. A more detailed
explanation of the inner workings of the Django framework
can be found in the Django documentation50.

The VSDK stores the elements that comprise a voice-

50https://docs.djangoproject.com/

service in the database. Each voice-service element is of a
certain type, e.g. a choice, a message that is played back or a
recording of the caller’s voice. These interaction types each
consist of several properties which are stored in a model (and
thus in the database), and corresponding views and tem-
plates. New instances of these interaction components can
be created through the administrator interface, after which
the properties of the newly created element can be entered.
(see Figure 12) When the VoiceXML browser requests the el-
ement, Django retrieves the necessary information from the
database and renders this information using the appropri-
ate template, producing a VoiceXML file. This VoiceXML
file is then parsed by the VoiceXML browser and presented
to the user. A more detailed explanation of the VoiceXML
generation implemented in the VSDK can be found in the
VSDK documentation51.

6.2 User registration and recognition
The configuration of Asterisk (and subsequently VXI) is

set to request a voice-service from the VSDK over HTTP.
In this HTTP GET request, the phone number of the in-
coming call (Caller ID) is included. The VSDK uses this
caller ID to recognize users that have been registered in the
system before and uses their preferences (e.g. the language
to use). This user recognition does not require any effort
from the user’s perspective and can (although not very se-
cure) be used as an authentication mechanism, for instance
for determining an user’s role and access level.

If the phone number is not in the system, the user is first
requested to choose a language in which to continue. After-
wards (if the voice-service is configured to do so) the user is
asked to speak their name, which can later be used to iden-
tify the user in the application’s functionality. The recording
of the user’s name can for instance be used by an adminis-
trator (such as an local NGO worker) to give the user a
written name in the system.

6.3 Speech and languages
As discussed in section 4.1.1 voice-services in the ICT4D

context have to support under-resourced languages, for which
there are no speech technologies available. The VSDK sup-
ports different languages in voice services by utilizing pre-
recorded audio fragments that are relevant for the use-case
domain. During the development of the service, all the
necessary voice-fragments are recorded in the different lan-
guages in which the service has to be accessible.

6.3.1 Slot-and-filler TTS
The method of producing speech used in the VSDK is

based on the use of pre-recorded fragments of speech that
refer to an element in a voice-service, giving each element
a voice label. This is a basic implementation of a slot-and-
filler TTS system that supports a limited domain. (Black
et al., 2000; J̊uzová et al., 2014) This works by dividing
each sentence used in a voice-service into reusable parts,
and playing back the relevant ones during usage of the voice-
service, when speech has to be generated. The boundaries of
these parts are defined by whether the fragment is static (e.g.
the welcome message) or a dynamic element (e.g. the days of
the week). While this is a very simple technique compared to
the many sophisticated TTS implementations, it works for
all languages and requires relatively little resources to set

51http://kasadaka-vsdk.readthedocs.io/en/latest/



Figure 12: A screenshot of the configuration page of a Choice element in the VSDK.

up. The main limitation of this system is that the scope of
usage is limited to the domain for which the fragments have
been recorded. As every word and (partial) sentence has
to be pre-recorded, it is not possible to generate speech for
all circumstances and contexts; Thus slot-and-filler is only
useful in applications that have a limited domain, which
produces a set of required fragments that is recordable in a
reasonable amount of time.

Even though recent TTS systems produce very good re-
sults, systems based on pre-recorded fragments are still used
(for languages that have well developed TTS systems) ex-
tensively in certain contexts. (McTear et al., 2016b) The
main area where these systems are used are in automated
announcement systems, such as the announcements of the
railways and airports52. These applications have a clearly
defined domain and are thus very suitable for the use of
pre-recorded fragment based systems. The advantage of
these systems is the clarity of the announcements, as the
voice is not synthesized but from a selected speaker with a
clear and well-understandable voice that sounds more nat-
ural. (Lewis, 2010) Characteristics that make these kinds
of systems recognizable include short pauses between frag-
ments and a slightly unnatural emphasis or flow between
fragments, combined with an extremely natural sounding
voice.

In the context of a voice-application, the structure of the
application is known and defined before hand. Usually when
considering a menu structure inside a voice-application (where
the user is given several options, each of which can be cho-

52For an example, see: http://aviavox.com/#listen

sen by pressing a number on the phone’s keypad), there is
a predictable pattern of voice-fragments that is required.
These fragments include: the initial question, a description
of each of the options in the menu and several supporting
fragments: the numbers 0 to 9 and small fragments instruct-
ing the user to press a number to make a choice. As each
call follows the same pre-defined call flow structure, these
fragments can be reused on every call. The size of the voice
fragments is determined by the element in the voice-service
to which it belongs. In practice this means that the frag-
ments are usually the size of either (parts of) sentences or
several words (describing an object).

During the VOICES project a more sophisticated imple-
mentation of a slot-and-filler system was developed, which
may be implemented into the VSDK in the future; This
system will be described in more detail in Section 10.1.2.
(Kleczar, 2017)

6.3.2 Voicelabel recording
To create a voice-service in the VSDK, every audio frag-

ment needs to be recorded and present in the VSDK. In
the administrator interface, the developer can upload audio
fragments or record them inside the development interface.
The VSDK then stores these fragments and connects them
to the voice-labels, which are in turn referenced by elements
in the voice-service. During a call, the VSDK looks up all
the elements necessary for generating the requested Voice-
XML file, and references the corresponding audio fragments
(in the language of the user that is calling) in the generated
VoiceXML document. The VoiceXML browser (VXI) then
loads these audio fragments and relays them to the user.



6.4 Call sessions
In order to manage variables and keep track of calls pro-

cessed by a voice application, the VSDK keeps track of calls
in the form of call sessions. These sessions are stored in the
VSDK’s database and contain essential information about
the call, such as the caller ID, time and language, as well
as the ‘path’ the user has taken through the application.
This functionality enables the service’s administrator to an-
alyze the usage of the application and can also be used for
statistical analysis and debugging purposes.

6.5 Testing and debugging
The process of developing a voice-service is different from

that of developing a conventional application or web-based
service. While in the development of websites and other
conventional applications the usage of automated testing ap-
plications is considered normal, for voice-applications such
testing suites can not be used. This is because testing the
application in a realistic environment involves calling the ser-
vice with an actual phone and trying out all functionalities
in the application. In traditional applications a bug usually
causes an error message to be presented or the application
to crash. In voice-applications a small bug or problem can
mean that the user hears nothing, or that the connection is
suddenly terminated without explanation to the user. Due
to the lack of a TTS system that covers all domains (see
Section 6.3.1), it is not possible to present a (specific) error
message to the user. This causes a very negative experi-
ence for the user, reinforcing the need for extensive testing
by the developer in order to reduce the amount of errors in
the application. While an experienced developer of voice-
application can usually quickly determine the cause of an
error; From previous experience of working with students
during the ICT4D course, an inexperienced developer can
spend a very long time without progressing on gaining in-
sight on the issue at hand (usually resulting in an trial-and-
error approach to the problem).

6.5.1 Voice service validation
In order reduce the complexity of voice-service develop-

ment, the VSDK includes some built-in checks and valida-
tions that check the voice-service for completeness and tries
to warn the developer about any detected issues. An exam-
ple of a problem that often occurs during the development
of a service, is a missing voice label of an element in a cer-
tain language. The voice-service will function without any
problems while missing this voice label, but when an user
accesses the application in his/her language (usually a lan-
guage not spoken by the developer and thus not used during
testing) this element will be skipped by the VoiceXML in-
terpreter (as the audio fragment cannot be loaded). This
results in an incomplete sentence towards the user, leaving
the user confused and potentially making the service useless
to users speaking this language.

To prevent this kind of error from happening, the VSDK
validates all elements belonging to the voice-service for voice
labels in all languages that are listed as being supported by
the service. If a voice label turns out to be missing or not
accessible (or some other problem arises), the VSDK will
alert the developer in the administrator interface. This sig-
nificantly reduces the amount of time spent testing the ap-
plication by the developer, and prevents frustration during
development.

Figure 13: An example of a validation error message dis-
played by the VSDK indicating a missing voice label, which
is an error that is easily overlooked by a developer, but can
cause the service to not function correctly.

7. EVALUATION
The VSDK was evaluated during the ICT4D course at the

Vrije Universiteit Amsterdam. For the 2017 edition of the
course, the VSDK was used to create voice-services for vari-
ous ICT4D use-cases. This served as a thorough evaluation
of the first version of the VSDK and provided insight in the
different approaches to voice service development taken by
the students, as well as feedback for further development
of the VSDK. This first version of the VSDK can be con-
sidered the minimal viable product (MVP) and is limited
to basic features only. It allows for the creation of basic
voice-service services that can be used for rapid-prototyping
purposes. Using a graphical interface, voice-services consist-
ing of simple choices with associated options and messages
can be designed without having to write any code. These
prototypes can be made in a quickly and without extensive
knowledge of the underlying technologies, which is useful for
rapid prototype development and evaluation; After set-up,
a simple service can be developed and tested through calling
in under 30 minutes, however the development of complex
use-cases take a considerable amount of time. In order to
fully implement more complex use-cases, the developer will
have to extend the VSDK with data-models that are rele-
vant to the use-case and write corresponding views to allow
the user to interact with the data. Extending the VSDK
requires knowledge of several programming languages and
frameworks, including (but not limited to) Python, Django
and VXML.

7.1 Set-up of the ICT4D course
The ICT4D course consists of a theoretical part, focusing

(among other things) on the many aspects of ICT4D and it’s
impact on the world, as well as a practical part, in which the
students (in groups of 3 or 4) created their own voice appli-
cation that is relevant for a use-case of their choosing. Over
the past years the practical part of the course has evolved,
allowing the students to experience the current state of de-
velopment of voice service research at the VU.

The students iterated three times during their develop-
ment, producing three versions of their voice applications
and the accompanying paper. The final iteration results
in a working voice-application for the chosen use-case, as
well as an accompanying paper explaining the context of
the use-case (requirements, business model, etc) and the de-
sign of the application. During the following sections we
will mostly focus on the technical part of the development,
as these results are the most relevant to the further progress
in developing the VSDK.

During the course there were several working sessions, in
which the students were able to ask for help on any ques-
tions or problems they encountered in the development pro-



cess.53 In addition to the working sessions, one lecture was
dedicated to the inner workings of the VSDK (and the un-
derlying KasaDaka platform) and an instruction into setting
up and deploying the VSDK54.

The experiences and conversations during the working ses-
sions as well as the resulting application and paper, provide
valuable information about the development process of the
students and their experience with using the VSDK.

It is worth noting that while the students were encour-
aged to use the VSDK to build and extend their applica-
tion, this was not obligatory and one student group decided
to build their own VXML generating application (not using
the VSDK).

A summarization of the three iteration steps in the
ICT4D course:

1. Creating an interaction prototype on the Voxeo
platform, consisting of one or more VXML files
that demonstrate a voice interaction with the user.
The goal of this iteration is for the student to get
to know VXML and the general structure of a
voice interaction.

2. Creating a functional prototype using the VSDK
and extending functionality of the prototype. In
this iteration the students learn the workflow of
the VSDK and recreate their interaction prototype
from the first iteration (written in VXML) using
the VSDK. The iteration also includes an exten-
sion of the functionality (this can be in any form
e.g. extra language support, more options, etc),
however extending the models and views included
in the VSDK do not yet have to be extended upon.

3. Finalizing towards an implementation prototype,
extending the VSDK functionality. The final it-
eration should produce a working implementation
of the voice-service, in which the functionality of
the VSDK has been extended to include models,
views and templates that implement the required
functionalities for the use-case. The final paper
describes the use-case and how the built voice-
application fits in this context, as well as docu-
mentation on the voice service and it’s develop-
ment (including a demo scenario walk-through).

For more information about the course, please refer to
the Vrije Universiteit Amsterdam study guide.55

7.2 System Architecture during the ICT4D course
The system architecture that was used during the ICT4D

course is a variation on the architecture that is used for
deploying voice-services in low-resource conditions (i.e. sub-
Saharan Africa). The goal of this architecture is to allow de-

53These working sessions were organized by the researcher
and Francis Dittoh, a PhD student in ICT4D with experi-
ence in working with the VSDK and the KasaDaka platform.

54A recording of this session is available on Youtube:
https://www.youtube.com/playlist?list=PLIZ5uFyl
SghojAEpzoUtnEczZLRKaAG0

55https://www.vu.nl/nl/Images/vu Study m information
sciences 20-7-2017 tcm289-851223.pdf

Figure 14: Evaluation of voice-services during the ICT4D
course: Skype session with Julien Ouedraogo (Burkina Faso)
and Amadou Tangara (Mali)

velopment without a Raspberry Pi and to allow easy modi-
fication of the VSDK code. Because the KasaDaka platform
is set up in a modular fashion, it is possible to easily ex-
change modules for others with similar functionality. In this
case the hosting of the VSDK is moved ‘into the cloud’.

7.2.1 Cloud-based hosting of the VSDK
As it was not possible to give each group a Raspberry Pi to

run the VSDK on, the system architecture during the ICT4D
course was changed to a partially cloud-based architecture.
The students used Heroku56, a cloud platform that facili-
tates easy deployment and hosting of web-applications. In
order to keep the functionality and usage scenarios as close
to the real platform as possible, calling and testing the ser-
vice was possible through a shared Raspberry Pi. This Rasp-
berry Pi hosted each group’s static audio files and a script
(called the VoiceXML Switcher) that allowed the student
groups to change the VXI configuration (see Section 5.2.3)
to their application. The applications could then be called
with a regular (mobile) phone by calling the number of the
Raspberry Pi’s GSM modem. A diagram describing this
adapted architecture, as well as a description of the interac-
tions is provided in Appendix C.

7.2.2 Feedback and testing of voice-applications
After each iteration the students received feedback on

their applications and papers, which they could use the im-
prove their applications for the next iteration. The applica-
tions were tested and evaluated by a member of the W4RA,
who has a lot of knowledge about the contexts of the use-
cases and has extensive experience with the end-users of
voice-services. The applications were also evaluated with
key stakeholders from Mali and Burkina Faso, through a
Skype call. (see Figure 14) This feedback of experts on the
use-cases allowed the students to better fine-tune their ap-
plications to their contexts.

7.3 Results
In total 31 students participated in the practical sessions,

spread over 10 groups. Each of the groups selected a use-case
in the context of ICT4D in sub-Saharan Africa and built a

56https://www.heroku.com/
58Built their own application using PHP and MongoDB
58Used an extension shared by group 1



Table 3: ICT4D course results

Group Students Use-case
Results

Group used
VSDK to build

application

The application
was functioning

correctly

Group extended
VSDK with
custom data

models

Group extended
VSDK with

custom types of
interactions

1 3 Citizen Journalism yes yes yes yes

2 3 Weather Information no57 yes n/a n/a
3 3 Animal Health yes yes yes yes

4 3 Animal Vaccination yes yes yes58 no
6 3 Weather Information yes yes no no
7 4 Diary Value Chain yes yes yes yes
8 3 Citizen Journalism yes yes no no
9 3 Diary Value Chain yes no yes yes
10 3 Weather Information yes yes yes yes
11 3 Animal Health yes no yes yes
total 31 90% 80% 78% 67%

voice-service during 6 weeks of the course. The use-cases are
described in Appendix A.

The pool of students consisted of a mix of many different
backgrounds, and different levels of experience in develop-
ing services and software. While there were some computer
science students, most students had very little programming
experience and none had previous experience in the devel-
opment of voice services. In order to be able to compare
the (technical) results and achievements of the groups (even
though the use-cases are different), the level of technical de-
velopment of the applications can be assessed by some gen-
eral measures. These measures aim to determine the extent
to which the students used and extended the VSDK in devel-
oping the application for their use-case. While students were
not required to extend the VSDK (as this requires signifi-
cant technical knowledge, which can not be expected from
all students), they were encouraged to do so in a way that
is useful for the specific chosen use-case. Besides extending
the application, the students could also choose to focus more
on the business or societal aspects of their use-case.

7.3.1 Analysis of results
In Table 3 the students’ results are listed, the applications

are available on GitHub59.
From this data can be concluded that almost all of the stu-

dents were able to build a working voice-service in the time
provided. A majority of the groups extended the VSDK
with custom data models relevant for their use-case, around
two thirds of the groups also implemented specific interac-
tions (views and VXML templates) with their data models
(a more involving task).

These results show that the first iteration of the VSDK
succeeds in being a tool that enables quick development of
voice-service prototypes. In order to extend these prototypes
into fully functioning applications, the VSDK needs to be
expanded upon with relevant data models and (if required)
specific interactions with this data through voice. These
more advanced and diverse functionalities were not yet in-
cluded in the version of the VSDK used in this evaluation.
While the process of expanding the VSDK requires some ef-
fort, it shows that the foundation offered by the VSDK is

59https://github.com/abaart/ICT4D-2017

able to support many different voice-services by expanding
the included functionality.

7.4 Evaluation and feedback
While these students have a relative high level of expe-

rience with information technologies (there was a mix of
mostly computer science and information science Master’s
students following the course) and thus are not very suitable
to compare with the target user group of sub-Sahara African
NGO-workers; The students are able to quickly and easily
provide feedback about the VSDK, which can be used to
further expand and refine the VSDK, which provides feed-
back without having to travel. This approach, while not
entirely comparable to having a feedback session with the
actual African user group, provides feedback that will be
used to iterate upon the design and functionality, while sav-
ing the time and money that would be required to travel
and do a similar session in sub-Saharan Africa.

At the end of the course the students were asked to fill in
a short survey on their experience with creating a voice ser-
vice and using the VSDK. The goal of this survey is to learn
about the process that the students went through as they
developed their first voice service. The survey consisted of
statements about the usefulness of the VSDK, which had to
be answered in a Likert scale. There were also open (qual-
itative) questions about VSDK features, improvements and
suggestions, as well as questions about the development pro-
cess. (encountered difficulties, easy aspects, etc.) The stu-
dents were asked to fill in the survey per group, after inter-
nal discussion. This was done to prevent inaccurate results
that could be caused by the internal division of work on the
project; This could result in some members of a group hav-
ing done all the development work in the VSDK and others
having written the use-case description and business-model,
which could cause inaccurate survey results.

The quantitative results of the statements are printed in
Table 4, a summary of the qualitative results of the open
questions are included in Appendix D. The raw data gath-
ered in the survey is also available online. (Baart, 2017a)

7.4.1 Survey results analysis
From the responses to the statements about the usefulness

of the VSDK can be concluded that the (limited) function-



Table 4: ICT4D course student survey results on a 5-point Likert scale (1 Agree, 5 Disagree)

Statement Mean σ
S1: “The VSDK seems suitable for creating simple voice-application prototypes” 2.1 1.73
S2: “The VSDK’s approach is suitable for the development of voice-services for ‘small languages’”. 2.1 2.00
S3: “The VSDK was more user friendly than manually writing VoiceXML files” 2.7 1.00
S4: “By ‘hiding’ the VoiceXML layer, people without programming knowledge should be able to
develop voice-service prototypes using the VSDK (excluding the set-up process)”

2.2 1.87

S5: “The validation system (detecting any errors in your application) was useful to me” 3.1 1.22
S6: “The VSDK was useful for developing simple voice-application prototypes” 2 1.87
S7: “After following the Django tutorial, I understood the mechanisms of models, views and tem-
plates”

2.6 2.92

S8: “By extending the basic functionalities in the VSDK with my own, I was able to create a voice-
service relevant to my use-case ”

2 1.87

S9: “The functionalities included in the VSDK would have saved me time, compared to building a
VoiceXML generating system myself”

2.3 1.22

S10: “The VSDK’s approach seems suitable for the development of complex voice-services (by ex-
tending it)”

2.1 1.58

S11: “I would consider using the VSDK again when developing a voice-application in the ICT4D
context”

2 1.58

S12 “Being able to record audio fragments in the web-interface would improve the development
process

2.4 1.22

S13: “Having uploaded audio files be automatically converted to the right format would improve the
development process”

1.7 2.83

ality that the VSDK provided the students, offers a feasible
platform for the development of voice-applications. The re-
sponses to statements S1, S2, S4, S6 and S11 show a general
positive response to the suitability of the VSDK’s building
block approach to voice-service development. For the devel-
opment of more complex voice-service applications (state-
ments S8 and S10) the responses are also positive, while it
should be noted that the functionality included in the ver-
sion of the VSDK that was used was lacking in included
functionality for advanced voice-services.

More neutral responses were given to statement S3, which
is slightly out of line with the responses to the previously
discussed statements. A possible explanation for this result
is that the students’ experiences with writing VoiceXML files
was limited to simple applications, which did not include
the usage dynamic data, slot-and-filler (see Section 6.3.1)
and multi-language support; This caused the comparison
between writing VoiceXML documents and using the VSDK
to not be fair, as the experiences were different in nature.
In hindsight this question was not useful in the context of
the evaluation, as the students did not have experience to
answer the question appropriately.

A feature of the VSDK that did not seem to fulfill its
goal is the validation system (S5), which checks the voice-
service for any missing voice-labels and references. What the
problems were with this functionality needs further research.
Another possibility is that the usefulness of the feature was
not very apparent to the students, as they did not have
experience developing without this functionality.

The experiences of working with the Django framework
were mixed, which shows by the high standard deviation
in statement S7. This matches the researcher’s experiences
during the working sessions. While some students (with
some previous programming experience) were quick to pick
up the workings of the Django framework, for others the
learning curve seemed steep. This further emphasizes the
need for a complete programming-less development experi-

ence for the targeted sub-Saharan user group.
Features that were not included in the VSDK, but that

emerged (and appeared to be useful) during the course are
generally agreed upon to be welcome additions to the feature-
set of the VSDK. (S12 and S13)

7.4.2 Qualitative results from survey
A summarization of the qualitative results from the open

questions in the survey can be found in Appendix D. The re-
sponses show that in general the functionality of the VSDK
enables the development of simple voice-services. The most
challenging factor in the students’ development process was
the learning curve of learning Python and Django in order to
extend the functionality of the VSDK. As the VSDK’s func-
tionalities will be expanded further, extending the VSDK
should no longer be necessary, eliminating this problem. (see
Section 10)

Another aspect that comes up repeatedly is the debug-
ging process in voice-service development; Debugging voice-
services is difficult and clumsy compared to regular applica-
tion debugging. While most programming languages have
debuggers and clear error messages that point at the prob-
lem, this is not the case with voice-services. In most cases
when an error occurs during a voice-service the telephone
connection is terminated, or a long silence occurs. There
is no further information about what went wrong, making
debugging the error difficult, often resulting in an trial-and-
error problem solving approach by the developer. Further-
more, there are currently no automated testing methodolo-
gies for voice-services, which implies that a lot of time in
the development process is spent in testing the application.
Considering that many voice-services in the ICT4D context
support several languages and have many branching struc-
tures, the amount of possibilities that need to be tested is
very high.

8. DISCUSSION



While achieving the end-goal of enabling complete devel-
opment and maintenance of voice-applications without pro-
gramming would enable many sub-Saharan NGOs to de-
velop and run voice-services, and the VSDK attributes a
step towards this goal; This goal is not yet in reach and
requires significant additional work in refining the VSDK
and KasaDaka platform, training local personnel and cre-
ating developer communities in several Sahel countries. So
while the VSDK is a first and significant step towards the
self-sufficiency of ICT4D voice-services in the Sahel, the
complete process of self-sufficient voice-service development
communities will take (many) more years.

The evaluation of the VSDK shows that the building block
approach to voice-service development is a feasible approach
to improving user-friendliness. While the idea of using tem-
plates (as building blocks) is not new and is implemented in
other voice-development environments, (see Section 2) the
VSDK does add several significant functionalities to the field
of voice-service development. However, where other voice-
service development environments also provide templates
for voice-service interactions, the platforms on which their
voice-services have to be deployed mostly use TTS and ASR
for the facilitation of interactions. Furthermore these ser-
vices are all provided as commercial products which require
(expensive) licenses and limit deployment to their own spe-
cific platforms. These platforms are often hard to connect to
local phone numbers in sub-Saharan countries, and require
(expensive) contracts with telephone companies. Due to
the closed-source nature of these commercial environments,
adapting or extending the functionalities of these environ-
ments is only possible by the company that developed the
product. As these companies are all based in highly devel-
oped countries, the costs of these adaptations and extensions
will be very high, defying the reason behind a voice-service
development environment: reducing the costs of develop-
ment.

In conclusion, the VSDK is a significant contribution in
the field of ICT4D voice-services. The VSDK allows for
the development of voice-services in the ICT4D context by
supporting all languages and running on low-resource hard-
ware. By enabling the inception of development communi-
ties in developing countries, it is now possible to develop
voice-services tailored to the local context with a signifi-
cantly reduced cost. The open-source license of the VSDK,
combined with the (future) availability of local developers
allows for complete ownership of sustainable voice-services
by local communities in developing areas of the world.

8.1 Limitations
The VSDK currently allows the development of simple

voice-services by using a GUI and fulfills the requirements
posed in Section 4.4. However many use-cases require more
advanced styles of interactions. Most of these interactions
involve handling data which is specific to the use-case, such
as rainfall measurements or market information. The cur-
rent set of interaction templates provided by the VSDK is
still limited, and does not support handling data inputs
and outputs. In order to achieve these functionalities the
VSDK can be extended by custom data models and tem-
plates required by the use-case, however in order to make
these extensions the developer needs to be able to write
Python code and VoiceXML documents. This limitation

prevents the VSDK of being suitable for more complex voice-
services, as ‘traditional’ voice-service development skills are
still required. Although this limits the reduction in develop-
ment complexity, it is still an improvement over the previ-
ous way of voice-service development on the KasaDaka plat-
form, which consisted of writing new (unique) views and
templates for every interaction in a voice-service. In the
case of a custom extension to the VSDK, the functional-
ity of this extension can be reused throughout the appli-
cation and shared with the rest of the development com-
munity (through GitHub). Because the extension will be
built on the foundations of the VSDK it is easily reusable
by others. An example of this occurred during the ICT4D
course, where a student group extended the VSDK with user
voice recording functionality, which was shared and reused
by other groups. Furthermore the administrator interface
can easily utilized by these custom extensions, which allow
voice-service maintainers (without programming knowledge)
to change settings and other elements of the extension’s
functionality. Thus after the development of the extension
is completed, maintenance can still be performed by others
without knowledge of it’s inner workings, maintaining the
advantage of ease of use offered by the VSDK.

9. CONCLUSION
The results of the evaluation of the VSDK show that the

building blocks approach to voice-service development is suit-
able for reducing the complexity of voice-service develop-
ment and simultaneously speeding up this process. The
VSDK provides an abstraction layer to the development
process, allowing for voice-service development in a web-
browser. By providing templates for the most used interac-
tions in voice-services, a developer can quickly build applica-
tions by applying and customizing these templates to create
a voice-application. It is not required for the developer to
have experience in programming or any of the other tech-
nologies that are used to allow a voice-service to function.
Furthermore, the basic usage of the VSDK on the Kasa-
Daka platform does not require any software installation on
the developer’s computer and can function without an inter-
net connection. These characteristics of the VSDK provide
a significant improvement over the past development work-
flow, which required extensive knowledge and experience in
all the technologies used for the hosting of voice servies.
This reduction in complexity of the development process,
combined with the support for under-resourced languages
and the ability to run on low-resource hardware, allow de-
velopers using the VSDK to quickly develop and deploy
ICT4D voice-service prototypes on the KasaDaka platform,
as well as maintaining and changing elements of existing
voice-services; Without requiring these developers to have
knowledge of the underlying technologies.

From these findings we can confirm the main hypothesis
of this research: by generalizing the interactions in voice-
services and providing these interactions as building-blocks
in a development environment, inexperienced users are able
to build simple voice-applications by deploying and cus-
tomizing these building-blocks. (see Section 3)

With further refinements and extension of the VSDK’s
functionality and documentation, the VSDK can be used
autonomously by NGO workers, radio presenters in the Sa-
hel region and other (ICT4D) voice-service use-cases. Fu-
ture voice-service maintainers and developers can be trained



in the usage of the VSDK, which is a process that is re-
alistic and much less invoved than learning to work with
languages such as Python and VoiceXML. By being able
to source the maintenance and development personnel lo-
cally (instead of hiring expensive foreign developers) has the
potential to cause a large decrease in costs, which in turn
reduces the total cost of ownership of voice-services. The
low cost of ownership of voice-services using the VSDK and
the KasaDaka voice-service hosting platform, combined with
the offered functionalities in supporting under-resourced lan-
guages, make the VSDK and the KasaDaka platform a com-
prehensive solution for sustainable voice-services in the ICT4D
context.

10. FUTURE WORK
In order to further progress towards the goal of sustain-

able voice-services in the Sahel, there are steps that have to
be taken in all aspects of the life-cycle of voice-services. Fol-
lowing is a summarization of the issues and improvements
that are relevant at the time of writing.

10.1 Further development of the VSDK
As discussed in section 8.1, the VSDK is not yet suitable

for the development of complex use-cases because it cur-
rently supports only a limited set of interaction templates.
The simplest way of improving this situation is by imple-
menting more templates into the VSDK, which allows it to
support more use-cases. These interaction templates will be
largely based on the use-cases brought forward by the re-
search of the W4RA (see appendix A) and will thus cover a
variety of interactions. However it is impossible to include
all possible interactions, and thus the VSDK will need to be
continuously expanded and refined to cater to new use-cases.

10.1.1 Linked data & dynamic data model genera-
tion

Another problem in implementing more advanced use-
cases is the storage of data that is specific to the use-case.
Django provides advanced data modeling techniques and al-
lows management of this data through the administrator
interface. However the definitions of the data models are
defined in the Python code. This implies that any custom
data models have to be written in Python and cannot be
created or changed easily (through a web-interface).

Together with the issue of a limited set of interaction tem-
plates, this issue prevents the VSDK of reaching the goal of
voice-service development of any use-case through a graph-
ical interface. In order to solve this limitation, the VSDK
should implement dynamic model generation functionality.
This functionality allows the developer to define and imple-
ment data models relevant to the voice-service and design
specific voice interactions with data in these models. While
there are some implementations of this functionality for the
Django framework, this is still a difficult problem to solve
as not only the data models should be generated from the
web-interface, but also the voice interaction templates that
access/handle this data. Furthermore these custom models
can become obstacles in the process of sharing data between
multiple applications, as each voice-service is likely to store
their data in a different way.

Another possible solution to this problem is to use linked
data to store the voice-service structure and data. Linked
data does not require data to adhere to a strict model, rather

it can be used with vocabularies that define the proper-
ties of relations between objects. One of the advantages
is that when data is exchanged between two nodes using
different data models, this data can easily be combined into
one data-set. Users can use well known vocabularies that
exist for many domains, which allows voice-services to use
and exchange information with other stores of linked-data.
Linked-data allows for new ways of sharing and accessing
data and allows data to be used in new contexts. (Bizer
et al., 2009) Previous research by Nieland (2013) has shown
the possibility of creating voice-interfaces to linked-data.

The Data2Documents vocabulary allows content manage-
ment in RDF, which can be used to store and generate
HTML web-pages from triples, using templates similar in
functionality as those found in Django. (Ockeloen et al.,
2016) If Data2Documents would be adapted to create Voice-
XML documents from triples, the structure of voice-services
can be stored in triples as well and reusable interaction tem-
plates as well as custom VoiceXML templates can be used
interchangeably.

Although these possibilities are very interesting and would
solve some of the current issues with the VSDK, the move
from SQL to a triple store would likely mean that Django is
no longer suitable as the framework for the VSDK. The main
downside of discarding Django is that all the web-interfaces
which are currently generated by Django will have to be
recreated by hand. Additionally the loss of rich documenta-
tion and availability of extensions will increase the learning
curve of future VSDK development, so this is a complex
consideration.

10.1.2 Advanced implementations of slot-and-filler
During the Lwazi II project an application was developed

that provides a TTS implementation of slot-and-filler, built
with under-resourced’ languages in mind. (Calteaux et al.,
2013) The initial goal of this research was to develop full
TTS systems for South African languages.

During the VOICES project, Daniel van Niekerk adapted
this system to be suitable for the development of slot-and-
filler systems for voice-services. During the project, sup-
port was developed for the African languages Bambara and
Bomu. Instead of the usage of voice fragments that is cur-
rently used in the VSDK, this system takes as inputs record-
ings of complete sentences which are then split into words to
form a word repository. Spoken outputs are then formed by
filling slots with spoken words from the repository. The ad-
vantage of this system is a higher reusability (as words can
be reused), which reduces the amount recording that is nec-
essary to cover a domain. Making adjustments to the mes-
sages used in the voice-service can be done without having
to re-record audio fragments, as the text that is to be spo-
ken is stored in written form, without the use of voice-labels.
Another advantage is that the size of the domain in which
the TTS system can be used increases, as the fragments are
now the size of words, which less tied to the context in which
they were recorded. (Marsman, 2017)

Recently Kleczar (2017) has researched this system and
provided a working implementation of the system in a voice-
application on weather information. This proves that the
system is still usable for usage in ICT4D voice-services to-
day. If this improved slot-and-filler implementation is in-
cluded in the VSDK, the amount of work required in the
recording of voice-fragments could be reduced and the VSDK



would become more flexible in the handling of changes to
spoken messages. However, in order to be useful in the con-
text of the VSDK, ease of use in setting up this slot-and-filler
system should be ensured by the VSDK.

10.1.3 Alternatives for VXI
The VoiceXML browser used in the KasaDaka platform

works well for current use cases, but may become a limiting
factor in the future. VXI is the only software component
used in the KasaDaka platform that is not open-source and
requires a license, which is undesirable in the ICT4D con-
text. An alternative to VXI will probably have to be found
in the future. A possible solution would be to ‘adopt’ the
voiceglue project, however this is a very large amount of
work and currently above the skill level of the researcher.
Another possibility would be to build a custom VoiceXML
browser that is linked to Asterisk. As the applications for
the KasaDaka platform do not require TTS and ASR and
have relatively simple means of interaction, it is not neces-
sary to support all of the VoiceXML functionality. A simple
VoiceXML browser implementation would be sufficient to
ensure the independence, affordability and stability of the
KasaDaka platform into the future.

10.1.4 Other enhancements
Besides these main points of refinement, there are many

other features that could be added to the VSDK’s function-
alities, including:

• Automatic testing of voice-services
• Allowing transactions using mobile money
• An interface to the top-up process of prepaid SIM

cards
• Data exchange between KasaDakas
• Backup of voice-services and data
• Implementation of a BIP60 voting and callback sys-

tem.
• Automatic outgoing calls (animal vaccination use-case)
• Implementing sending and receiving SMS
• Developing tools for voice-service debugging

10.2 Overcoming hardware limitations
While the conbination of a Raspberry Pi with a GSM

dongle is a good fit to the conditions of the ICT4D context,
there are also several limitations which can become prob-
lematic. Especially when KasaDakas are to be rolled out
on a large scale it is important that the hardware is stable,
which means the following problems need to be addressed:

• The Raspberry Pi does not have a Real Time Clock,
which means that when the power is removed from
the Raspberry Pi and there is no internet connection,
the date and time will be incorrect from that moment
forward.

• The Raspberry Pi does not function well on 5 volts, as
it requires 5.2 volts to function correctly. This means
that regular micro-USB phone chargers and power banks
cannot be used.

60Also known as ‘flashing’ in English, calling a number and
disconnecting before a connection has been established. This
technique is used in voting about opinion or the content of
radio programs, as it is a free means of communication and
allows for many concurrent votes to be cast.

• When the power supply fails when the Raspberry Pi
is running, there is a chance at corruption of the SD
card, as it was writing during the power failure. When
this happens (and this is a question of time with an
unreliable power supply as in the ICT4D context) the
Raspberry Pi will no longer boot and hence become
useless.

• The GSM/3G modems used in the KasaDaka platform
are being phased out for LTE modems, which do not
support voice over the GSM network. Currently these
modems can still be found on the second-hand market,
but this will become problematic when the KasaDaka
platform has to scale.

10.2.1 Designing specialized hardware
These limitations can be addressed in several ways, but

the most rigorous way is to design custom hardware for the
KasaDaka platform. By designing a custom Printed Circuit
Board for the KasaDaka, these problems can all be addressed
by including hardware on the board. This board could be
based on the Raspberry Pi, including all the same compo-
nents of a regular Raspberry with the addition of compo-
nents that solve the shortcomings of the Pi.

10.3 Pilot Burkina Faso
In a recent trip to Burkina Faso (Baart, 2017b) the re-

searcher has taken part in a workshop with local innova-
tive farmers, that was centered around weather information,
specifically rainfall. During the workshop the researcher
worked together with local radio presenters to develop a
demonstration of a rainfall voice-service overnight, which
was shown on the next day of the workshop. As the re-
searcher now has experience with the stakeholders of this
use-case, it is a likely candidate for a pilot deployment of a
KasaDaka running the VSDK. This pilot can be used to do
further research on voice-services and serves as a long-term
test of the VSDK.

10.4 Starting a local development community
When the VSDK and the KasaDaka platform has matured

sufficiently and has been tested in the field, the benefits of
the improvements in development usability can be reaped
by training local voice-service developers. In order to reach
the goal of self-sufficient voice-services, these communities
should be able to teach and maintain themselves, should
be spread throughout the Sahel region and the development
should provide a sufficient wage for the developers. Farmer
communities could then hire these local voice-developers to
develop and host a voice-service tailored to their information
needs.

Acknowledgements
I would like to thank Victor de Boer for his help and guid-
ance in this research project and the many caffeine buzzed
brainstorming sessions. Also I would like to thank Hans
Akkermans, Anna Bon, Wendelien Tuijp and Gossa Lô for
their support and inspiration throughout my projects. Spe-
cial thanks go to Francis Dittoh for assisting me with the
ICT4D working sessions. I also want to thank Amadou Tan-
gara and Julien Ouedraogo for their feedback and support
during the trips to Mali and Burkina Faso and with the
evaluation of voice-applications.



References
Aker, Jenny C and Isaac M Mbiti (2010). “Mobile Phones

and Economic Development in Africa”. In: Center for Global
Development Working Paper 211.June 2010, pp. 1–43. issn:
08953309. doi: 10.1257/jep.24.3.207.

Akkermans, Hans, Chris van Aart, Victor de Boer, Nana
Baah Gyan, Anna Bon, Wendelien Tuyp, and Amadou
Tangara (2013). VOICES Deliverable D3.1: m-Agro Knowl-
edge Sharing Field Pilot Final Evaluation. Tech. rep.

Ali, Maryam and Savita Bailur (2007). “The challenge of
sustainability in ICT4D-Is bricolage the answer”. In: Pro-
ceedings of the 9th international conference on social im-
plications of computers in developing countries. Citeseer.

Baart, André (2016a). Andre Report Bamako Trip Oct 2016.
doi: 10.6084/m9.figshare.5688799.v1.

– (2016b). “Creating a flexible voice service framework for
low-resource hardware : extending the KasaDaka”. In: Bach-
elor Thesis Vrije Universiteit Amsterdam.

– (2017a). ICT4D 2017 survey RAW results. doi: 10.6084/
m9.figshare.5702452.v1.

– (2017b). Trip report workshop Gourci (Burkina Faso) Feb
2017. doi: 10.6084/m9.figshare.5688769.v1.

Bagshaw, Paul, Etienne Barnard, and Olivier Rosec (2011).
VOICES Deliverable D3.1: Report on state of the art and
development methodology. Tech. rep.

Berment, Vincent (2004). “Méthodes pour informatiser les
langues et les groupes de langues ´peu dotéesˇ”. PhD the-
sis. Université Joseph-Fourier-Grenoble I.

Besacier, Laurent, Etienne Barnard, Alexey Karpov, and
Tanja Schultz (2014). “Automatic speech recognition for
under-resourced languages: A survey”. In: Speech Commu-
nication 56.Supplement C, pp. 85–100. issn: 0167-6393.
doi: https://doi.org/10.1016/j.specom.2013.07.008.

Bizer, Christian, Tom Heath, and Tim Berners-Lee (2009).
“Linked data-the story so far”. In: Semantic services, in-
teroperability and web applications: emerging concepts, pp. 205–
227.

Black, Alan W and Kevin A Lenzo (2000). Limited domain
synthesis. Tech. rep. Carnegie-Mellon University.

Boer, Victor de, Nana Baah Gyan, Anna Bon, Wendelien
Tuyp, Chris Van Aart, and Hans Akkermans (2015). “A
dialogue with linked data: Voice-based access to market
data in the sahel”. In: Semantic Web 6.1, pp. 23–33.

Bon, Anna (2016). “ICT4D 3.0, - An adaptive, user-centered
approach to innovation for development.” In: CAiSE 2016.

Bon, Anna, Victor de Boer, Nana Baah Gyan, Chris van
Aart, Pieter De Leenheer, Wendelien Tuyp, Stephane Boy-
era, Max Froumentin, Aman Grewal, Mary Allen, Amadou
Tangara, and Hans Akkermans (2013). “Use Case and Re-
quirements Analysis in a Remote Rural Context in Mali”.
In: International Working Conference on Requirements
Engineering: Foundation for Software Quality.

Calteaux, K, Febe De Wet, C Moors, D Van Niekerk, B
McAlister, A Sharma Grover, T Reid, M Davel, E Barnard,
and C Van Heerden (2013). Lwazi II Final Report: In-
creasing the impact of speech technologies in South Africa.
Tech. rep. CSIR.

Chapman, Robert and Tom Slaymaker (2002). “ICTs and
Rural Development: Review of the Literature, Current In-
terventions and Opportunities for Action”. In:

Chhetri, Deepak (2013). “Voice User Interface Design for m-
Event Organizer”. In: Vrije Universiteit Amsterdam Mas-
ter Thesis, pp. 1–28.

Davies, Tim and Duncan Edwards (2012). “Emerging Impli-
cations of Open and Linked Data for Knowledge Sharing
in Development”. In: IDS Bulletin 43.5, pp. 117–127. issn:
1759-5436. doi: 10.1111/j.1759-5436.2012.00372.x.

de Boer, Victor, Pieter De Leenheer, Anna Bon, Nana Gyan,
Chris van Aart, Christophe Guéret, Wendelien Tuyp, Stephane
Boyera, Mary Allen, and Hans Akkermans (2012). “Ra-
dioMarche: Distributed Voice- and Web-interfaced Mar-
ket Information Systems under Rural Conditions”. In: Ad-
vanced Information Systems Engineering 7328, pp. 518–
532.

Farrugia, Paulseph-John (2005). “Text to speech technolo-
gies for mobile telephony services”. In: Pace and Cordina
[PC03].

Fuchs, Christian and Eva Horak (2008). “Africa and the dig-
ital divide”. In: Telematics and Informatics 25.2, pp. 99–
116. issn: 07365853. doi: 10.1016/j.tele.2006.06.004.

GSMA (2016). GSMA report: The Mobile Economy: Africa.
Gyan, Nana Baah (2016). “The Web, Speech Technologies

and Rural Development in West Africa”. PhD thesis. Vrije
Universiteit Amsterdam.

Gyan, Nana Baah, Victor de Boer, Anna Bon, Chris van
Aart, Hans Akkermans, Stephane Boyera, Max Froumentin,
Aman Grewal, and Mary Allen (2013). “Voice-based web
access in rural Africa”. In: Proceedings of the 5th Annual
ACM Web Science Conference on - WebSci ’13, pp. 122–
131. doi: 10.1145/2464464.2464496.

Heeks, Richard (2008). “ICT4D 2.0: The next phase of ap-
plying ICT for international development”. In: Computer
41.6, pp. 26–33.

Heine, Bernd and Derek Nurse (2000). African languages:
An introduction. Cambridge University Press.

Ittersum, Martin K. van, Lenny G. J. van Bussel, Joost
Wolf, Patricio Grassini, Justin van Wart, Nicolas Guil-
part, Lieven Claessens, Hugo de Groot, Keith Wiebe, Daniel
Mason-DCroz, Haishun Yang, Hendrik Boogaard, Pepijn
A. J. van Oort, Marloes P. van Loon, and Kenneth G.
Cassman (2016). “Can sub-Saharan Africa feed itself?” In:
PNAS Early Edition 113.52, pp. 1–6. issn: 0027-8424. doi:
10.1073/pnas.1610359113.

ITU (2016). “ICT Facts and figures 2016”. In: p. 8. issn:
14713063. doi: 10.1787/9789264202085-5-en.

J̊uzová, Markéta and Daniel Tihelka (2014).“Minimum Text
Corpus Selection for Limited Domain Speech Synthesis”.
In: Text, Speech and Dialogue: 17th International Confer-
ence, TSD 2014, Brno, Czech Republic, September 8-12,
2014. Proceedings. Ed. by Petr Sojka, Aleš Horák, Ivan
Kopeček, and Karel Pala. Cham: Springer International
Publishing, pp. 398–407. isbn: 978-3-319-10816-2. doi: 10.
1007/978-3-319-10816-2 48.

Kleczar, Justyna (2017). “General purpose methodology and
tooling for Text-to-Speech support in voice services for
under-resourced languages”. MA thesis. Vrije Universiteit
Amsterdam.

Krasner, Glenn E, Stephen T Pope, et al. (1988). “A descrip-
tion of the model-view-controller user interface paradigm
in the smalltalk-80 system”. In: Journal of object oriented
programming 1.3, pp. 26–49.

Lewis, James R (2010). Practical speech user interface de-
sign. CRC Press.

Lô, Awa Gossa (2014). “The power of knowledge sharing
: innovative ICTs for the rural poor in the Sahel”. In:
Bachelor Thesis Vrije Universiteit Amsterdam.



Mantel, Stephan (2014). “Small hardware solutions for voice
services”. In: Vrije Universiteit Amsterdam Bachelor The-
sis June.

Marsman, Rudy (2017). “The implementation of Artificial
Intelligence in the re-use of old media corpora”. MA thesis.
Vrije Universiteit Amsterdam.

McTear, Michael, Zoraida Callejas, and David Griol (2016a).
“Creating a Conversational Interface Using Chatbot Tech-
nology”. In: The Conversational Interface. Springer, pp. 125–
159.

– (2016b).“The conversational interface”. In: New York: Springer
10, pp. 978–3.

Nieland, Rianne (2013). “Talking to Linked Data : Compar-
ing voice interfaces for general-purpose data”. In: Vrije
Universiteit Amsterdam Master Thesis.

Nierstrasz, Oscar, Simon Gibbs, and Dennis Tsichritzis (1992).
“Component-oriented Software Development”. In: Com-
mun. ACM 35.9, pp. 160–165. issn: 0001-0782. doi: 10.
1145/130994.131005.

Nissilä, Jussi (2016). “Promoting Scalability and Sustain-
ability of Ict4D Projects Using Open Source Software”.
PhD thesis, p. 117. isbn: 9789512966189.

Ockeloen, Niels, Victor de Boer, Tobias Kuhn, and Guus
Schreiber (2016). “Data 2 Documents: Modular and Dis-
tributive Content Management in RDF”. In: Knowledge
Engineering and Knowledge Management: 20th Interna-
tional Conference, EKAW 2016, Bologna, Italy, November
19-23, 2016, Proceedings 20. Springer, pp. 447–462.

Papeschi, Franco, Nicolas Chevrollier, Filipe Pinto, Carole
Salis, and Hans Akkermans (2011). VOICES Deliverable
D6.1: Mobile Training Lab Requirements. Tech. rep.

Poushter, Jacob (2016). “Smartphone ownership and inter-
net usage continues to climb in emerging economies”. In:
Pew Research Center 22.

Reij, Chris, Gray Tappan, and Melinda Smale (2009). Agroen-
vironmental transformation in the Sahel: Another kind of”
Green Revolution”. Vol. 914. Intl Food Policy Res Inst.

Sendzimir, Jan, Chris P. Reij, and Piotr Magnuszewski (2011).
“Rebuilding Resilience in the Sahel: Regreening in the
Maradi and Zinder Regions of Niger”. In: Ecology and So-
ciety 16.3, p. 08. issn: 17083087. doi: 10.5751/ES-04198-
160301.

Toyama, Kentaro (2010). “Can technology end poverty”. In:
Boston Review 36.5, pp. 12–29.

UNESCO (2011). UNESCO report: Regional overview: sub-
Saharan Africa.

Vries, Nic J. de, Marelie H. Davel, Jaco Badenhorst, Willem
D. Basson, Febe de Wet, Etienne Barnard, and Alta de
Waal (2014). “A smartphone-based ASR data collection
tool for under-resourced languages”. In: Speech Commu-
nication 56.Supplement C, pp. 119–131. issn: 0167-6393.
doi: https://doi.org/10.1016/j.specom.2013.07.001.

Warschauer, Mark and Morgan Ames (2010).“Can One Lap-
top per Child save the world’s poor?” In: Journal of in-
ternational affairs, pp. 33–51.

Webster, Frank (2014). Theories of the information society.
Routledge.



APPENDIX
A. SUB-SAHARAN ICT4D VOICE-SERVICE

USE CASES

A.1 Citizen Journalism: Foroba Blon
This use case was brought forward by a use case gathering

effort of the W4RA in 2011. Foroba Blon is meant to be a
citizen journalism platform, based on the ability to leave
voice messages.

Foroba-Blon is mainly used by radio stations, enabling in-
teraction with listeners. Listeners are able to leave voice
messages, stating their opinion or reporting on local news
events. The presenter of the radio can include these mes-
sages in their program, enabling local and independent jour-
nalism.

When a user calls the system, he/she is greeted and in-
vited to leave a message. The message is then recorded and
stored on the system, where the radio operator is able to ac-
cess and manage the left messages through a web interface.
(Bon et al., 2013)

A.2 Market Information: Radiomarché
The Radiomarché use case is a marketplace platform, en-

abling users to exchange information about agro-related prod-
ucts in the regional market. This platform simplifies the
trading of products by interconnecting the markets of sev-
eral villages and allowing access to this market data without
the need for travel. Users can request current market infor-
mation, e.g. the current offers and prices of a produce; As
well as advertise their produce that is for sale to potential
customers. (Gyan et al., 2013; Gyan, 2016) In co-operation
with local radio stations, the current offerings on the sys-
tem are combined in to a spoken message which is regularly
updated and broadcast on local radio stations.

A.3 Weather Information: Meteo
The goal of the meteo use-case is to provide weather infor-

mation. The details of the implementations of this weather
information service differ depending on the local needs and
context. In many of the Sahel countries reliable weather
information is not available, while this data (rainfall in par-
ticular) is of great importance for local farmers.

The weather data can be sourced from an online API
(e.g. OpenWeatherMaps), weather sensors connected to the
Raspberry Pi, or by crowdsourcing where users contribute
their own measurements. In the latter case users call the ser-
vice and enter their measurements, which is then presented
to other users.

A.4 Animal Health: DigiVet
The DigiVet use-case provides a service that diagnoses

diseases in cattle, such as cows and chickens. By asking the
users simple yes/no questions about the symptoms of the
animal, a rough diagnosis can be made without having to
travel and pay for a veterinarian (which is often an issue in
sub-Saharan Africa). Based on the diagnosis the system can
recommend further care or connect the user with a veteri-
narian.

DigiVet has been implemented by Lô (2014) using a graph-
ical interface on a small touchscreen connected to a Rasp-
berry Pi, but can also be implemented through a voice-
service.

A.5 Animal Vaccination
The Animal Vaccination use-case is a reminder service for

animal vaccinations. Cattle can get many diseases which
often prove to be lethal. However many of these deaths can
be prevented by vaccinating the animal.

For example, chickens can be vaccinated for relatively lit-
tle cost, this can be done by the farmer himself. However
in order for the vaccinations to be effective, they have to be
administered repeatedly over a long period. This is difficult
as the farmer is unable to read or write and thus is not able
to read and follow a vaccination schedule.

The voice-service can allow the farmer to keep track of the
animal vaccinations by providing the farmer with automated
spoken reminders about when to vaccinate their cattle.

A.6 Diary Value Chain: Milk
The milk use-case is a voice-service that improves the lo-

gistics and value-chain of fresh milk. Because of the temper-
ature in the Sahel and the lack of refrigeration, milk has to
be processed in a factory within four hours of production.
Due to a lack of information about the amount and location
of milk produced, it is difficult to meet this requirement,
which leads to loss and a lower quality of milk.

The milk voice-service aims to improve this situation by
connecting the milk producers with the milk processing fac-
tory. The milk producers announce their produced milk to
the system, and the pick-up service then knows where there
is milk that needs to be transported, preventing unnecessary
driving and delays. By improving the value-chain more milk
is available to the local market and less milk is wasted.

B. INSTALLATION OF VSDK & SOURCE
CODE

More information about the installation process of the
VSDK and the documentation about usage of the VSDK
can be found in the documentation: http://kasadaka-vsdk.
readthedocs.io/en/latest/.

The source code of the VSDK is available on GitHub:
https://github.com/abaart/KasaDaka-VSDK

C. SYSTEM ARCHITECTURE DURING ICT4D
COURSE

In Figure 15 the architecture during the ICT4D course
is shown. Marked are the interactions that changed signif-
icantly compared to the standard architecture, which are
described below.

1. The developer deploys the VSDK (with own modifica-
tions or extensions) on the Heroku platform.

2. The developer uploads the static audio files to the
Raspberry Pi through FTP.

3. The developer changes the configured VoiceXML URL
of VXI through the VoiceXML Switcher script hosted
on the Raspberry Pi.

4. When the application is called, VXI retrieves the con-
figured VoiceXML document URL, which is hosted on
Heroku.

D. QUALITATIVE RESULTS OF ICT4D COURSE
SURVEY



Figure 15: System architecture during the ICT4D course

Following is a summarization of the responses of the qual-
itatative questions of the ICT4D course student survey. The
raw data is also available. (Baart, 2017a)

What are [...] features you would like to see added [to the
VSDK]?

• A built-in testing system
• Element duplication
• Defining element ordering
• Adding voice-fragment transcription
• Allow loops in call-flow
• Implement support for VoiceXML snippets
• Visualization of the call-flow
• Call forwarding and SMS support
• Easy integration of APIs and external data stores
• Performing data management through a voice-service

What are aspects [of the VSDK] that you would like to see
improved?

• The debugging workflow, there is no feedback from the
VoiceXML interpreter and debugging through Heroku
did not work well

• More comprehensive instructions for testing applica-
tions

• Error messages and error handling
• Being able to record voice-fragments directly from the

VSDK

What are the aspects you found most difficult in developing
your prototype on the VSDK?

• Error handling

• Not having a backup feature and not being able to
copy and move elements

• Adapting and expanding the VSDK code
• Learning Django, Git and Heroku
• Debugging on Heroku
• Connecting external APIs
• The difference in ease of use between the VSDK and

VoiceXMl
• Converting the audio files to the right format

What are the aspects you found most easy in developing
your prototype on the VSDK?

• Uploading audio files
• Managing languages
• Creating a linear call flow
• Creating a simple voice-service
• Creating new voice-service elements
• Adding new models and templates

What are some of the most difficult problems you (tried
to) tackle(d) during the development process?

• Fixing errors in the application
• Learning to use Python and Django to extend the

VSDK
• Debugging dus to unclear errors
• Setting up a testing environment to test the extensions

to the VSDK
• Connecting other services to the VSDK platform
• Recording voice in the VSDK and retrieving stored

data


